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PREFACE

This document is the first revision to the National Aeronautics and Space Administration

(NASA)/Goddard Space Flight Center (GSFC) document X-582-76-77, published in April

1976, which was written by Computer Sciences Corporation (CSC) and GSFC personnel

and edited by J. O. Cappellari, Jr. (CSC), C. E. Velez (GSFC), and A. J. Fuchs (GSFC).

This revision reflects the operational version of GTDS associated with Release 3 of the

Trajectory Computation and Orbital Products System (TCOPS). This release became

operational in 1988.
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ABSTRACT

This document presents a description of the mathematical theory underlying the Goddard

Trajectory Determination System (GTDS) and includes an overview of the system

capabilities. The basic mathematical formulations presented include mathematical

descriptions of the coordinate and time systems, perturbation models, orbit propagation

techniques, numerical integration techniques, measurement models, statistical estimation

methods, and launch and early orbit determination techniques.
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CHAFrER 1--INTRODUCTION

This publication presents a description of the mathematical theory for the Earth/lunar/

interplanetary Goddard Trajectory Determination System (GTDS). GTDS is a multipur-

pose computer system designed

"to provide operational support for individual Earth, lunar, and planetary space

missions and for the research and development requirements of the various proj-

ects of the NASA/Goddard Space Flight Center scientific community" (Refer-

ence 1)

This orbit determination system includes many of the capabilities of previous orbit deter-

mination programs developed by the Goddard Space Flight Center (GSFC) (References 2

and 3).

GTDS is, by its very nature, an evolutionary system. The first document describing the

mathematical theory of GTDS (Reference 4) corresponded to a developmental version of

the system. The mathematical theory for the version of GTDS implemented at GSFC in

the spring of 1976 was documented in Reference 5. Since then, GTDS has evolved

through several operational versions, and a Research and Development (R&D) version has

been developed to permit evaluation of promising methods for operational, nonroutine,

and highly precise orbit determination. This document, which is a revision of Refer-

ence 5, corresponds approximately to GTDS Release 3.0, which was implemented at

GSFC in the spring of 1988 (References 6 and 7). As additional capabilities are added to

the system, this document will be updated or revised.

This document is not intended to represent a set of mathematical specifications for devel-

oping the GTDS software, but rather it is a description of the basic mathematical formula-

tions used in GTDS. The format varies somewhat from section to section, ranging from a

straightforward presentation of the basic equations used in the program to a tutorial ap-

proach that delves into some of the underlying theory, depending on the topic under

discussion.

In addition to describing the basic mathematical formulations of this particular system,

this document provides the reader with a comprehensive overview of the key physical and

mathematical models required by orbit determination systems and describes the results of

various evaluations and improvements developed at GSFC as a result of years of opera-

tional orbit determination experience.

An overview of GTDS is presented in Chapter 2. This overview includes a discussion of

the programs available in GTDS, system capabilities, and schematic diagrams of the dif-

ferential correction, ephemeris generation, data simulation, and error analysis processes,

along with an indication of which chapters in this document contain the algorithms associ-

ated with each function.
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Chapter 3 defines the coordinate and time systems necessary to accurately model the

spacecraft's dynamic motion and tracking measurements. Chapter 4 describes the accel-

eration models that constitute the Cowell equations of motion and the variational equa-

tions. Chapter 5 gives the formulation of the orbital equations of motion, including

general perturbation and special perturbation methods. Chapter 6 describes the numerical

integration of the equations of motion and variational equations, while Chapter 7 de-

scribes the measurement models and systematic error corrections applied to the measure-

ments. Chapter 8 contains a description of the estimators and statistical models, and

Chapter 9 presents early orbit techniques that can be used to obtain an estimate of the

vehicle state from early tracking measurements.

Several appendixes are included in this document. Appendix A gives functional descrip-

tions of various tracking systems and preprocessing techniques. A detailed description of

the time elements used in the regularized equations of motion can be found in Appen-

dix B, and Appendix C contains a rigorous discussion of the conversion of Doppler meas-

urements to range rate. Appendix D presents information on typical a priori standard

deviations and dynamic weighting factors for several observation types, and Appendix E

presents a derivation of the matrix identities associated with the sequential estimation

process.

At the end of each section or appendix, references specific to that section/appendix are

listed. Following the last appendix, glossaries and an index are provided for the conven-

ience of the reader.

This mathematical theory document is specifically directed to the analyst. The GTDS

User's Guide (Reference 6) is directed to a general user audience, which includes analysts,

programmers, and data technicians. Although a brief description of the system is pro-

vided in the user's guide, the principal contents are specific requirements for using the

system.

NOTATION CONVENTIONS

Major notation conventions used in the text and equations throughout this document (un-

less otherwise noted) are as given below.

^

R,I 

= Vector

= Unit vector

= First derivative or velocity

= Second derivative or acceleration

= Position and velocity with respect to the inertial coordinate system

(this coordinate system is defined in Section 3.2)
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r,? -- Position and velocity with respect to the true of date coordinate

system (this coordinate system is defined in Section 3.2)
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CHAFIER 2--GTDS OVERVIEW

Orbit determination in GTDS involves a complex mathematical process that combines the

disciplines of orbital dynamics, measurement modeling, and estimation theory. This proc-

ess is implemented through the use of several separate programs, which are briefly de-

scribed in Section 2.1.

The capabilities of the system are discussed in Section 2.2. These capabilities include

trajectory generation, measurement modeling, and estimation techniques. Also included is

a discussion of the early orbit determination process, which allows a crude initial estimate

of the orbit to be obtained from early tracking data. In addition, the orbit determination

system combines capabilities that are frequently useful in mission analysis studies when

executed independently; GTDS has been provided with several modes of operation to

permit utilization of these separate capabilities.

The acceleration sources that are accounted for in the GTDS dynamic model are de-

scribed in Section 2.3, while Section 2.4 discusses near-realtime operation.

2.1 GTDS PROGRAMS

To meet the varying demands imposed upon the system by operational support of the

research and development requirements of various projects, GTDS includes the following

programs:

• Differential Correction Program

• Ephemeris Generation Program

• Ephemeris Comparison Program

• Filter Program (not currently available)

• Early Orbit Determination Program

• Data Simulation Program

• Error Analysis Program

• Data Management Program

• Permanent File Report Generation Program

• Thrust Parameter Modeling Program

This document presents the mathematical models and procedures for all of these pro-

grams except the Permanent File Report Generation Program. A brief description of each

of the programs is given in the remainder of this section.

2.1.1 DIFFERENTIAL CORRECTION PROGRAM

The primary purpose of the Differential Correction Program is to estimate the satellite

orbit and associated parameters. The estimation algorithm used in the Differential
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Correction Program is called the weighted least-squareswith a priori covariance algo-
rithm or the Bayesian weighted least-squaresalgorithm. It minimizes the sum of the
squaresof the weighted residuals betweenthe actual and computed measurements,while
simultaneously constraining the model parameters to satisfy the a priori conditions to
within a specified uncertainty. Both first- and second-orderstatistics (i.e., the mean and
covariance matrices) are determined for the estimated variables.

2.1.2 EPHEMERIS GENERATION PROGRAM

The function of the Ephemeris Generation Program is to compute, from prescribed initial

conditions, the value at a specified time of the vehicle state and, optionally, the state

partial derivatives. In order to meet varying precision and efficiency requirements, several

orbital theories have been provided, ranging from a first-order analytic theory to a high-

precision Cowell-type numerical integration. The state partial derivatives can be computed

by precision numerical integration of the variational equations. The state partial deriva-

tives with respect to the initial state (i.e., the state transition matrix) can optionally be

generated using a two-body analytic approximation.

2.1.3 EPHEMERIS COMPARISON PROGRAM

The Ephemeris Comparison Program compares two input ephemerides. The comparison

can be specified over a particular arc or over the arc of overlap between the ephemerides.

The radial, along-track, and cross-track differences are computed and output.

2.1.4 FILTER PROGRAM

The Filter Program, which is not currently available in the operational version of GTDS,

provides an alternative to the Differential Correction Program for estimating the satellite

orbit and associated parameters. The Filter Program contains sequential estimation algo-

rithms. Sequential filters differentially correct (update) the satellite state recursively at

each measurement point processed. As a result, these methods are referred to as sequen-

tial processing methods, in contrast to the batch processing method used in the Differen-

tial Correction Program. Other elements of the Filter Program, such as model parameters

and measurement handling, are the same as in the Differential Correction Program.

2.1.5 EARLY ORBIT DETERMINATION PROGRAM

The Early Orbit Determination Program is designed to determine approximately an initial

estimate of a satellite orbit when there is no a priori estimate available to start a differen-

tial correction process. The program provides three methods for achieving this: (1) the

Gauss Method, (2)the Double R-Iteration Method, and (3)the Range and Angles

Method.

2.1.6 DATA SIMULATION PROGRAM

The Data Simulation Program computes simulated tracking measurements of a spacecraft

from specified ground sites. The simulated data are generated for specified measurement
_J
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intervals and sampling frequencies.The program also has the capability to simulate atti-
tude sensormeasurements.Optionally, random and bias errors can be added to the meas-
urements.Measurementscan also be modified to account for the effects of atmospheric
refraction, antennamount errors, transponder delays, and signalpropagation time delays.

2.1.7 ERROR ANALYSIS PROGRAM

The GTDS Error Analysis Program provides the capability of analyzing the effect of track-

ing error uncertainties, solve-for vector uncertainties, and consider parameter uncertain-

ties associated with a specified orbit and station-dependent tracking schedule. Since the

Error Analysis Program functions are similar to those performed in the Differential Cor-

rection and Data Simulation programs, these programs share common mathematical proc-

essing subroutines, input processors, and data management options. The Error Analysis

Program features that are common to the Differential Correction and Data Simulation

programs include the use of a tracking schedule, selection of tracking stations, selection

of measurement types, specification of measurement standard deviations and weights,

and specification of the a priori state covariance matrix. Construction of the normal ma-

trix and the use of the consider mode to account for the effect of consider parameter

statistics on the covariance matrix of the solve-for vector are performed in the same

manner as in the Differential Correction Program.

2.1.8 DATA MANAGEMENT PROGRAM

The primary function of the Data Management Program is to create working files of data

to be used by other programs in GTDS.

2.2 SYSTEM CAPABILITIES

The key elements of the GTDS differential correction (DC) process are shown schemati-

cally in Figure 2-1. The chapters in this document that contain the algorithms associated

with each function are indicated in this and succeeding figures in Chapter 2. Both the

batch and sequential modes for estimating the orbital state are shown. The use of com-

mon modules to perform key functions is basic to the GTDS structure. For this reason,

algorithms derived in this document are applicable to many areas of GTDS. As shown in

Figure 2-1, an estimate of the orbital state at an initial epoch must first be specified

a priori from an independent source. Measurements to be processed are retrieved from a

file, and an orbit generator determines the satellite trajectory (position and velocity) at

times corresponding to the measurement sampling times. In addition, at each sampling

time, estimates of the measurements are computed as a function of the satellite trajectory.

In a batch mode, this process is performed sequentially from data time to data time and

constitutes the inner loop of the process (see Figure 2-1). In addition to the computed

measurements, partial derivatives of the measurements with respect to the epoch state
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must be computed in the inner loop for use in the statistical regression process. Upon

completion of the inner loop processing at the measurement times, the epoch state is

differentially corrected by means of a Bayesian weighte d least-squares method. The up-

dated epoch state is then used to perform another inner loop iteration. Repeated iteration

of the inner loop, culminating each time with a differential correction to the epoch state,

constitutes the outer loop. As the iterations proceed, the epoch state converges to the

Bayesian weighted least-squares solution to the nonlinear orbit determination problem.

In the sequential filter mode, a single loop is used to perform these measurement calcula-

tions and partial derivative calculations, and the state and covariance matrices are up-

dated after each measurement to obtain the final state. It should be noted that Figure 2-1

depicts functional relationships and not the actual GTDS structure. Within the GTDS

structure, the filter mode logic is separate from the batch mode logic.

GTDS system capabilities in the areas of trajectory generation, measurement modeling,

estimation techniques, early orbit determination, statistical output report modeling, and

optional modes of operation are described in the following subsections.

2.2.1 TRAJECTORY GENERATION

Trajectory generation is performed through integration of the orbital equations of motion

in the Ephemeris Generation Program. Ephemeris generation can be performed as a

standalone function as shown in Figure 2-2. In addition, trajectory generation is a key

element of the differential correction process shown in Figure 2-1. The analytic and nu-

merical trajectory generation theories available in GTDS are discussed in this section.

The orbital equations of motion can be expressed most simply in terms of the rectangular

components of the acceleration vector acting on the satellite. Considerable research has

focused on the problem of transforming the orbital equations of motion into a more

desirable form. The general approach is to reformulate the equations in terms of a new

set of orbital elements, to solve the transformed set of equations for the value of the

orbital elements at the desired time, and then to transform these elements to the desired

element set (e.g., Cartesian or Keplerian).

In the general perturbation approach, this reformulation of the equations of motion yields

a set of equations that can be integrated analytically. The chief advantage of such trajec-

tory generation methods is their high efficiency. However, reformulation of the orbital

equations such that an analytic solution is possible usually requires some approximations.

For example, in the Brouwer theory, which is a General Perturbation Method in GTDS,

the perturbation model includes only the effects of a point-mass Earth and the low-order

zonal harmonics in the gravitational potential. For the generation of satellite trajectories

for which these are the dominant perturbations, Brouwer theory is sufficiently accurate.
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Solution of the equations of motion via numerical integration is classified as a Special

Perturbation Method. The numerical integration techniques available in GTDS are dis-

cussed in detail in Chapter 6. In the high-precision Special Perturbation approach, the

perturbing acceleration that acts on the satellite is modeled as accurately as possible. The

various perturbation models and numerical integration techniques available in GTDS are

discussed in Chapters 4 and 6, respectively. The chief advantage of the special perturba-

tions approach is high accuracy; however, these methods are considerably more expen-

sive, in terms of computer time, than the general perturbation methods.

Numerical integration of the orbital equations expressed in terms of the Cartesian compo-

nents of the acceleration vector acting on the satellite is called the Cowell Method. In both

the Variation of Parameters (VOP) and Intermediate Orbit approaches, the Cowell equa-

tions of motion are reformulated to obtain equations that are better conditioned for nu-

merical integration. In the VOP approach, a transformation is made to a set of orbital

elements that provides an exact solution to the two-body problem. The orbital equations

expressed in terms of these elements include variations in orbital elements arising only

from the perturbing acceleration vector, i.e., the point-mass effects of the Earth are inte-

grated exactly. The VOP methods are superior for studies requiring very long propaga-

tion, such as lifetime studies.

In the Intermediate Orbit approach, an approximate solution obtained by an analytic

theory is used as a reference solution, and the time rate-of-change of the difference be-

tween the the true solution and this reference solution is numerically integrated to obtain

an improved solution. Intermediate Orbit methods can be developed for any analytic the-

ory; however, only two Intermediate Orbit methods have been considered for implementa-

tion in GTDS. The first is the Brouwer Intermediate Orbit with only first-order

short-period terms due to the J2 nonspherical geopotential term or with the first-order

short- and long-period terms and second-order secular terms due to the J2 term. The

second method is a similar orbit developed using Poincar_ variables so that orbits of low

eccentricity and low inclination can be considered. The Intermediate Orbit approach

should be optimal for an orbit for which numerical inaccuracies in the integration of the

element rates arising from two-body or J2 effects are a major error source. The major

drawback of both the VOP and Intermediate Orbit approaches is the computational cost

associated with the required transformation of the orbital elements to and from the

Cartesian state vector.

Fixed-step numerical integration is inefficient for the computation of highly eccentric

orbits (i.e., eccentricity greater than 0.1) if time is used as the independent variable. For

such applications, an automatic mechanism is required to force a small stepsize in the

region of large perturbations and a large stepsize in the region of small perturbations.

Several variable stepsize options are available in GTDS; however, stepsize changes are

costly and frequently introduce errors. Therefore, an alternative analytic stepsize control
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mechanism is also available. In this procedure, the equations of motion are reformulated
in terms of a new independent variable s instead of time t, such that

1
ds oc--dt (2-I)

r n

where r is the magnitude of the satellite position vector. The effect of this transformation

is to "regularize" the independent variable so that fixed steps in s correspond to variable

steps in t that are smaller when r is small (i.e., where the perturbations are usually larger)

and larger when r is large.

Several regularized trajectory generation methods are currently implemented in GTDS.

The Time-Regularized Cowell Method was developed by reformulating the Cowell orbital

equations in terms of the independent variable s (with n = 3/2 as the default value) in

Equation (2-1). The Kustaanheimo-Stiefel (KS) Method is a regularized VOP formulation

that uses the eccentric anomaly as the independent variable (n = 1 in Equation (2-1)).

The Delaunay-Similar (DS) Method is a regularized VOP formulation in which the true

anomaly is used as the independent variable (n = 2 in Equation (2-1)). This form of

analytic stepsize control works well when the forces vary inversely with distance from the

central body. The DS approach has the strongest regularization, followed by the Time-

Regularized Cowell Method, and then the KS Method. The chief disadvantage of the

regularized methods is that they require numerical integration of an additional equation,

the time equation. For orbits with low eccentricity (i.e., less than 0.1), analytic stepsize

control is not needed and the error introduced by numerical integration of the time equa-

tion may even degrade the solution.

Special perturbation methods are also included in GTDS for generation of a mean trajec-

tory, representing only the long-term evolution of the orbit. Numerical averaging is one

such long-term orbit prediction method in GTDS. The numerical averaging method is a

VOP approach in which the short-period perturbing effects are numerically averaged out

of the equations of motion, leaving only the long-term motion to be integrated. The cost of

each integration step is high but is usually far outweighed by the large stepsizes that are

possible in the integration of the averaged dynamics. The averaged prediction model is

most efficient for applications where knowledge of the short-period perturbations is not

required (e.g., mission analysis or prediction of tracking station acquisition times) or

where the cost of numerically integrating the precision equations of motion is prohibi-

tively high (e.g., determination of gravitational models from large amounts of tracking

data).

2.2.2 MEASUREMENT MODELING

Measurement modeling provides the means by which the estimate of the orbit of a space-

craft is compared with its true flight. The orbit e_timate is expressed in terms of the
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conceptual abstractions of position, velocity, and time, whereas the measurementscan
involve measurementsof some physical property of electromagnetic wave propagations
between the tracking station and the spacecraft. The propagation measurementsare se-
lected such that they can be easily related (via theoretical postulates) to the spacecraft
state. This process of analytically relating the measurementquantities to the spacecraft
state is referred to as measurementmodeling and is vitally important to the accuracy of
the orbit estimate.

The measurementmodels in GTDS are employed in the differential correction and data
simulation processes,and, as shown in Figure 2-1, the algorithms are presented in Chap-
ter 7. The relationship of thesemodels to the GTDSData Simulation Program is shownin
Figure 2-3.

2.2.2.1 Measurement Types

GTDS provides for the processingof the following types of measurements:

• Goddard Range and Range-Rate (GRARR) very high frequency (VHF) and

S-band radar data, including range, range-rate, and range-difference data and

X and Y gimbal angle data

• C-band radar range data and azimuth and elevation angle data

• Minitrack interferometer direction cosine data

• Spaceflight Tracking and Data Network (STDN) Ranging Equipment (SRE)

Unified S-band (USB) radar propagation time delay, Doppler shift, and X and

Y gimbal angle data

• Applications Technology Satellites (ATS) Ranging (ATSR) propagation time

delay, Doppler shift, and X and Y gimbal angle data

• Tracking and Data Relay Satellite System (TDRSS) range, Doppler shift, azi-

muth and elevation angle data, and TDRSS beam angles

• Laser tracking, including the range data, the azimuth and elevation angle data,

and the X and Y gimbal angle data

SRE VHF range and range-rate data

Space Ground Link Subsystem (SGLS) range, range-difference, and azimuth

and elevation angle data

2.2.2.2 Data Preprocessing

Before introduction into GTDS, the raw tracking measurements can undergo considerable

preprocessing to convert from the measured quantities to estimates of the spacecraft state
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components relative to the tracking station. The preprocessing of measurement data is

normally done by means of a computer program completely independent of GTDS. Raw

data are converted from the form received from the tracking stations to forms suitable for

storage in the data base and for use in GTDS. Wild points are edited out, calibration

corrections are applied to eliminate known instrumentation errors, ambiguities in the data

measurement and/or recording are resolved, conversions are made from the measurement

units to units that are more physically meaningful or convenient, and the data are option-

ally smoothed and possibly compacted if large amounts of raw data are measured. These

preprocessing algorithms are discussed in Appendix A.

More specifically, this preprocessing can include the following:

• Two-way propagation time delay conversion to two-way relative ranges

• Doppler-plus-bias cycle count conversion to relative range rate

• C-band radar gimbal angle conversion to line-of-sight azimuth and elevation

angles

• Minitrack interferometer fractional phase count augmentation with whole cycle

counts to resolve ambiguities and conversion into line-of-sight direction cosines

relative to the station east-west and north-south baselines

• Conversion of reference frequency cycle counts to time intervals

The modeling within GTDS is thus greatly simplified. It is only necessary to compute the

appropriate quantity from the relative position vector between the tracking station and the

spacecraft in local tangent coordinates.

2.2.2.3 Measurement Models

The GTDS measurement modeling requires rigorous iterative solutions for the two-way

USB propagation paths and for the round-trip propagation, path from the ground radar to

the synchronous Tracking and Data Relay Satellite (TDRS) to the target satellite and back

for TDRSS. These finite speed propagation paths are computed as straight lines in inertial

coordinates. A round-trip circuit represents the modeling of the "range" time delay meas-

urement, and two round-trip circuits are necessary to model the Doppler measurements in

terms of the round-trip light-time difference. The USB and TDRSS Doppler measurements

are implemented as a nondestruct count.

All of these measurement models assume vacuum propagation of the electromagnetic

wave. Corrections to the observed measurements are coraputed for the refraction effects

due to the presence of the atmosphere (the nondispersive troposphere and the dispersive

ionosphere). In addition, other corrections to the measurements are estimated for tracking

antenna location errors and spacecraft transponder delay characteristics.
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The modeling of the measurementsalso includes the calculation of the partial derivatives
with respect to the solve-for and consider variables. Variations of any of the variables
except two, the tracking station locations and the tracking databiases,result in changesto
the estimateof the spacecraftorbit. For the remaining variables, the partial derivatives of
the measurementsare computed in terms of variations of the spacecraft state at the time
of the tracking signal turnaround. This variation with respect to the local state is then
related back to the epochtime via the appropriate elementsof the state transition matrix.
This matrix maps changes in the initial state vector components into changes in space-
craft state components at any subsequenttime of interest. The elements of the state
transition matrix are calculated by numerical integration of the variational equationsasso-
ciated with the trajectory.

2.2.3 ESTIMATION TECHNIQUES

As stated in Section 2.1.1, the primary estimation algorithm available in GTDS is called

the weighted least-squares with a priori or Bayesian weighted least-squares algorithm (see

Chapter 8). This algorithm minimizes the sum of the squares of the weighted residuals

between the actual and computed observations, while simultaneously constraining the

state to satisfy an a priori state to within a specified uncertainty. The iterative estimation

process differentially corrects the estimated variables and ultimately determines the

weighted least-squares solution. Both first- and second-order statistics (i.e., the mean and

covariance matrices) are determined for the estimated variables.

A second method, which is not currently available in the operational version of GTDS, is

the Extended Kalman Filter (EKF) sequential estimator (see Chapter 8). Several features

have been incorporated to prevent divergence due to model errors in the dynamics or

measurements. These vary from artificially constraining the covariance gain to using

adaptive techniques.

Two classes of variables can be accommodated in the statistical computations. The first

class, called solve-for variables, includes model parameters whose values are known with

limited certainty and are being estimated. The second class, called consider variables,

includes model parameters that are not being estimated, but whose uncertainty will affect

the statistics of the solve-for variables. Model parameters that can be included in either

the solve-for or consider classes include the following:

• Spacecraft state vector components in Cartesian, Keplerian, or spherical coordi-

nates (solve-for only)

Atmospheric drag parameters

Solar radiation pressure parameter

• Gravitational potential coefficients
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• Thrust parameters

• Attitude model parameters

• Tracking station locations and timing biases

• TDRS statevector componentsin Cartesian,Keplerian, or spherical coordinates
(solve-for only)

• Measurementbiases

Specified subsetsof the spacecraft position and velocity components can optionally be
estimated in mean of 1950.0, mean of 2000.0, or true of date inertial Cartesian coordi-
nates, classical orbital elements, or spherical coordinates.

GTDS can also operate in an error analysismode, wherein only the covariancematrix of
the solve-for variables is differentially corrected and propagatedthrough the process.The
error analysisprocess, shown in Figure 2-4, relies heavily on functions in the differential
correction process, suchas the computation of measurementsand the update of the nor-
mal matrix. The solve-for variables are unchangedfrom their a priori specified values. In
this mode, only the uncertainties of the tracking data, not the actual data, are required.
This mode permits simulation and analysisof the uncertainties resulting from the estima-
tion process prior to mission operations.

2.2.4 EARLY ORBIT DETERMINATION

Occasionally, a priori state value estimates of sufficient accuracy to yield convergence of

the iterative process are unavailable, as when mission anomalies occur and preflight esti-

mates of the state are no longer valid. For such cases, GTDS has the capability of rapidly

determining approximations of the spacecraft's position and velocity from a limited

amount of early tracking data. These approximations provide starter values for the differ-

ential correction process.

Three early orbit approximation methods, described in Chapter 9, are available in GTDS.

These methods are (1) the Gauss Method, (2) the Double R-Iteration Method, and (3) the

Range and Angles Method. The Gauss and Double R-Iteration Methods use three sets of

radar gimbal angle measurements to estimate the state vector. The Range and Angles

Method uses multiple sets of radar range and gimbal angle data to estimate the state

vector.

2.2.5 STATISTICAL OUTPUT REPORT MODELING

GTDS provides the capability for validating the tracking data and calibrating the trackers

through generation of the Statistical Output Report (SOR). This feature is described fur-

ther in Section 8.7 of Chapter 8.
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Figure 2-4. Schematic Diagram of the Error Analysis Process
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2.2.6 OPTIONAL MODES OF OPERATION

Each of the programs that make up GTDS can be utilized in a number of different modes,

depending on the needs of the user.

The Ephemeris Generation Program can be used to propagate a vehicle state from a given

epoch to some specified time. This program is useful for several purposes:

• To generate a spacecraft ephemeris report on the online printer

• To generate a spacecraft ephemeris on disk or tape in either the ORBIT,

EPHEM, or ORB1 (for Cowell integration only) File format

• To perform vehicle lifetime studies

• To generate state partial derivatives over a given timespan

The Differential Correction Program employs a Bayesian weighted least-squares algorithm

to estimate the vehicle state, various force model parameters, and nondynamic parame-

ters such as station locations and observation biases. The Differential Correction Program

uses the Ephemeris Generation Program with any of the available orbit theories to satisfy

integration requirements. The Differential Correction Program can also be used to do the

following:

• Determine a definitive orbit" during near-realtime operational mission support

or during postflight support

• Determine better estimates of the gravitational harmonic coefficients, the coef-

ficient of drag, the solar radiation constant, etc.

• Save the results of a differential correction in the form of updated elements on

an elements file or an orbit history on an EPHEM or ORBIT File

The Data Simulation Program is designed to compute simulated measurements at a speci-

fied frequency for given sets of tracking stations and measurement intervals. Simulated

data are useful for controlled tests that require the data to conform to certain criteria

(e.g., particular force model, biases, or corrections for particular portions of the orbit).

The Data Simulation Program allows the measurement tracking schedule to be specified

in one of the four following forms:

Periodic detailed schedule

Spacecraft pass

Function of special events

Function of times on an actual measurement tape

The Data Simulation Program also provides for random and bias errors in the computed

measurements as well as the effects of atmospheric refraction, antenna mount errors,
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transponder delays, and the light-time correction. It uses the same modeling algorithms
that are employed by the Differential Correction Program and data from the GTDS
ORBIT File to compute measurements.

The Error Analysis Program provides the capability to perform analysisof tracking errors
for an arbitrary orbit, given the station-dependenttracking scheduleand other scheduling
information. The program provides a variety of statistical output reports, including the
following:

• The epoch covariance matrix and correlation coefficients associatedwith an
entire tracking span are provided, along with the standarddeviations associated
with the elementsand solve-for parameters in various coordinate systems.Sen-
sitivity information about the consider parameters and the noise effect on the
epoch state is also available.

• The user canoptionally requestthat the epoch covariancematrix and sensitivity
matrix be mapped to requested times. Trajectory standard deviations and the
root sum square (RSS)of the position and velocity sigmasare provided at each
mapping time. At the last mapping time, the covariance matrix and associated
correlation coefficients are also printed.

The Error Analysis Program uses the Data Simulation Program tracking schedule, the
differential correction matrix accumulation, and data from the GTDS ORBIT File to con-
struct the required statistical matrices.

2.3 SPACECRAFT DYNAMICS

To accommodate the varying requirements at GSFC in near-Earth, lunar, and interplane-

tary mission analysis, the GTDS dynamic model includes the following acceleration

sources:

N-Body Point-Mass Gravitational Accelerations--These include all planets in

the solar system, the Sun, and the Earth's Moon.

Nonspherical Gravitational Accelerations--The nonspherical gravitational ac-

celeration model allows the inclusion of up to a 21 x 21 potential field for the

Earth and Moon.

Aerodynamic Force Accelerations--The aerodynamic force acceleration model

for the Earth includes a dynamic atmosphere model that accounts for the ef-

fects of variations in the solar flux on the Earth's upper atmosphere. A modi-

fied Harris-Priester model and Robert's analytical formulation of the Jacchia

(1971) model are available.

Solar Radiation Accelerations--The solar radiation model includes shadowing
and variations with the distance from the Sun.
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Q Attitude Control System Accelerations--A generalized model is included to

account for the small accelerations resulting from the use of attitude control

systems (not currently available).

Thrusting Maneuver Accelerations--A generalized model is included to ac-

count for the accelerations resulting from propulsive maneuvers. This includes

the capability to use pregenerated mass and thrust tables.

The reference coordinate system for the equations of motion is optionally either the mean

equator and equinox of B1950.0, mean equator and equinox of J2000.0, or a true of date

system at a specified epoch. Coordinate transformations account for precession, nutation,

and polar motion of the Earth's spin axis. Planetary positions are determined from a

peripheral ephemeris file containing Chebyshev polynomial coefficients derived from Jet

Propulsion Laboratory (JPL) ephemeris data.

GTDS is provided with a flight-sectioning capability, wherein the complete trajectory arc

can be partitioned into multiple subarcs. The dynamic model options, numerical integra-

tion characteristics, and output quantities and frequency can be suitably tailored for each

subarc. The criteria for crossover from one subarc to the next are based on either time or

spatial conditions, which can be specified for each subarc.

The state transition matrix, required by the estimator algorithm, is obtained by numeri-

cally integrating the variational equations. A Cowell predictor-corrector numerical

integration algorithm is used to integrate the second-order equations of motion and associ-

ated variational equations. Automatic or semiautomatic error control is provided by ad-

justing the integration stepsize by using a time-regularization process.

Various options are available in the dynamic models and numerical integration algorithms

to provide the versatility to accommodate both high-speed near-realtime applications and

precision postflight applications.

2.4 NEAR-REALTIME OPERATION

To provide operational support, GTDS includes a near-realtime capability with interactive

graphics reporting and control facilities. The interactive capabilities allow the user to

select and modify input parameters, to view the results of GTDS processing, and to auto-

matically compute and monitor observation residuals.

Near-realtime operation usually necessitates a compromise in computational precision

compared with that generally achieved during postflight processing. Several options are

included for this purpose. These options, which permit more rapid computation without

seriously jeopardizing precision, affect the orbit generator type selection, model approxi-

mation, and control over the number of variables being estimated or considered.
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CHAPTER 3--COORDINATE AND TIME SYSTEMS

The orbit determination process involves measurements that are taken and forces that are

modeled in several different space and time coordinate systems. This chapter defines

these systems and gives the necessary transformations between them.

3.1 GENERAL COMMENTS AND DEFINITIONS

The GTDS coordinate systems consist of the fundamental astronomical reference systems

and other systems that were originally borrowed from aeronautics or originated from

special requirements of space exploration. Requirements for different coordinate systems

occur from the following three sources:

• Input data

• Internal computations

• Output requirements

For example, the input ephemerides of the planets are heliocentric and refer to the mean

equator and equinox of B1950.0" or J2000.0.t The input measurement data are in a

topocentric coordinate system. The integration is done in either geocentric, selenocentric,

planetocentric, or heliocentric rectangular coordinates referred to the mean equator and

equinox of B1950.0 or J2000.0 or referred to the true equator and equinox of a specified

epoch. The force model includes terms referred to a coordinate system that is fixed in the

rotating Earth and terms that are referred to the Moon and the planets. The output re-

quirements can be osculating elements with respect to the Earth, Moon, or planets. These

specific coordinate systems are defined and discussed later in this chapter.

Since several different coordinate systems are used in GTDS, these systems must be

defined and provision must be made for transforming from one coordinate system to

another. A coordinate system is defined by specifying the origin of the coordinates, a

reference plane, and a principal direction in the reference plane. This specification of the

reference plane includes an identification of the positive, or north, or outward sense along

the normal to the plane. The reference plane is an equivalence class of mutually parallel

planes. For example, the equator is defined to be the plane normal to the Earth's axis of

rotation. Usually, this plane contains the Earth's center of mass; however, in selenocentric

* The beginning of the Besselian solar year is denoted by the notation .0 after the year. The notation
B1950.0 corresponds to January 0.d923, 1950 ephemeris time. For a detailed explanation, see Refer-
ence 1, pages 22, 30, and 69.

1"If coordinate system axis directions are frozen with respect to the epoch 2000.0, the system is referred
to as the Julian 2000.0 inertial (J2000.0) system.
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equatorial coordinates, the parallel plane contains the Moon's center of mass. To avoid
any such difficulty, the celestial sphereof infinite radius is introduced, and the celestial
equator is defined as the intersection of the equatorial plane with the celestial sphere.
This is another way of identifying the equivalence classesof parallel planes and parallel
lines. The reference plane often refers to that member of the equivalenceclass that con-
tains the origin of the coordinate system. The corresponding statement holds for the
equivalence of parallel lines in defining a principal direction.

The designations of coordinate systems, according to the location of the origin, are given

in the following table:

Origin of Coordinates

Observer

Center of the Earth

Center of the Moon

Center of the Sun

Center of mass

Designation of System

Topocentric
Geocentric

Selenocentric

Heliocentric

Barycentric

The following reference planes are used:

Horizon. Without further designation, the horizon is the plane tangent to the

oblate ellipsoid Earth model at a specified point on the surface. The outward

normal is directed away from the Earth model. For topocentric coordinates, the

reference plane is the geographic horizon corresponding to the point on the

Earth model whose normal passes through the observer.

Equator. The equator is the Earth's equator, unless otherwise specified. This is

the plane normal to the Earth's axis of rotation, and north is in the direction of

the angular velocity vector of the rotation, also called the celestial pole. The

Moon's equator is defined in a corresponding way.

Plane of an Orbit. The plane of an orbit is defined by two-body motion, and

north is the direction of the angular momentum. In the problem of more than

two bodies, the osculating plane corresponds to the state at a given epoch or the

mean plane that has the periodic perturbations removed.

Ecliptic. The ecliptic is the Earth-Sun orbital plane and is a special case of the

plane of an orbit. North is the direction of the system's angular momentum,

also called the ecliptic pole.

The principal direction is usually specified by giving the sense along the intersection of

the reference plane with some other plane. The other plane can be a meridian plane, an

equatorial plane, or another orbital plane. A meridian plane is defined as any plane that

contains the axis of rotation of one of the principal gravitating bodies. Commonly used
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meridians of the Earth and Moon that are used to determine principal directions are the

following:

Greenwich or Prime Meridian. The Greenwich meridian is the Earth's meridi-

an plane that passes through the former Royal Observatory at Greenwich,

England.

Lunar Prime Meridian. The lunar prime meridian is the Moon's meridian

plane that passes through the mean center of the apparent lunar disk (that point

on the lunar surface that would be intersected by the Earth-Moon line, were the

Moon to be at the mean ascending node when this node coincided with either

the mean perigee or the mean apogee).

Local Meridian. The local meridian is the Earth's or Moon's meridian plane

that passes through the observer's position. This concept is not meaningful

when the observer is situated on the axis of rotation.

Other principal directions frequently used in astronomy are as follows:

Vernal Equinox or Equinox. The equinox is the fundamental principal direc-

tion used in astronomy. It is defined as the intersection of the ecliptic and the

Earth's equator with the positive sense being from the Earth to the Sun as the

Sun crosses the equator from south to north.

Ascending Node. The ascending node is the intersection of an orbital plane and

the reference plane with the positive sense being from the origin toward the

orbiting body as it crosses the reference plane from the south to the north.

Thus, the vernal equinox is an ascending node.

3.2 COORDINATE SYSTEM DESCRIPTIONS

The coordinate systems used in GTDS are described in the following subsections. For

each system, the origin, reference plane, and principal direction are given, and the related

coordinates are defined.

3.2.1 BODY-CENTERED EQUATORIAL INERTIAL (GEOCENTRIC,

SELENOCENTRIC, OR PLANETOCENTRIC)

Origin:

Reference Plane:

Principal Direction:

Center of the reference body

Equatorial plane of the Earth at epoch

Vernal equinox of epoch
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Rectangular Cartesian Coordinates (seeFigure 3-1):

A
X axis

A
Y axis

A
Z axis

= principal direction
A A

= normal to the X and Z axes to form a right-handed system

-- normal to the equatorial plane of epoch in the direction of the

angular momentum vector

SPIN AXIS

VERNAL EQUINOX

Figure 3-1. Body-Centered Inertial Coordinate System

When the reference body is the Earth, this coordinate system is referred to as the geocen-

tric equatorial inertial (GCI) coordinate system. The origin of the GCI coordinate axes,
A A A A

X, Y, Z, is the Earth's center. The +Z axis points north along the Earth's spin axis, the
^

+X axis points to the vernal equinox direction in the Earth's equatorial plane, and the
A A A A

+Y axis completes the orthogonal triad so that Y = Z x X. Because the Earth's spin

axis precesses about the ecliptic pole with a period of approximately 26,000 years, the

GCI axes slowly move in inertial space at a rate of approximately 50 arcseconds per year.

Therefore, a reference time has to be attached to the definition of the GCI coordinate

system to make it truly inertial.
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When the axis directions are frozen at their mean directions at the beginning of the
year 1950 (epoch 1950.0), the system is referred to as the Besselian 1950.0 inertial
031950.0)system.Similarly, if the axis directions are frozen at their mean directionswith
respect to the epoch 2000.0, the system is referred to as the Julian 2000.0 inertial
(J2000.0)system.The Besselianand Julian designators refer to the associateddefinitions
of the length of a year used in these systems.

Within the following formulation, _, X, Y, and Z designate the position vector and
Cartesian coordinates referred to the mean equator and equinox of B1950.0 or J2000.0
inertial coordinate frames. Similarly, gE, XE, YE, and ZE designate the position vector
and Cartesiancoordinatesreferred to the mean equator and equinox of epoch, and t-, x,
y, and z designatethe position vector and Cartesiancoordinatesreferred to the true equa-
tor and equinox of epoch.

Spherical Polar Coordinates:

r --- radial distance from the origin to the point being measured

a = right ascension measured east from the vernal equinox, tan -1 (Y/X)

d = declination measured north from the equator, sin -1 (Z/r)

3.2.2 BODY-CENTERED ROTATING

Origin:

Reference Plane:

Principal Direction:

Center of the reference body

Equatorial plane of the reference body at epoch

Intersection of the prime meridian with the equator

Rectangular Cartesian Coordinates (see Figure 3-2)"

A
x b axis

^ axis
Yu

^ axis
Zb

= principal direction

= normal to the _b and _b axes to form a right-handed system

= normal to the equatorial plane of epoch in the direction of the

north celestial pole

Spherical Polar Coordinates:

r

;t --

_b' --

radial distance from the origin to the point being located

longitude angle measured east from the prime meridian, tan -1 (yb/xb)

geocentric latitude angle measured north from the equator, sin -1 (zb/rb)
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Geodetic Coordinates:

h

¢=

height measured normal to the local body surface to the point being
located

longitude angle described above

geodetic latitude angle measured north from the equatorial plane to the

vector normal to the ellipsoidal body surface passing through the point

being located (see Figure 3-2)

A

Zb

PRIME _

MER,O,  I X'SX _ ^

EQUATORIAL_ Yb

Xb J!.

Figure 3-2. Body-Centered Rotating Coordinate System

3.2.3 LOCAL PLANE SYSTEM

Origin:

Reference Plane:

Principal Direction:

Center of the reference body (see Figure 3-3)

Plane containing t-, the geocentric position

point P, and the z axis

Geocentric position vector to point P

Rectangular Cartesian Coordinates (see Figure 3-3):

vector to

^ axis
Xlp

^

y_p axis

^ axis
Zip

= directed along the geocentric position vector to point P

= axis displaced from the inertial y axis by the origin's right ascen-

sion and lying in the equatorial plane

-- north-pointed axis lying in the reference plane normal to the prin-

cipal direction
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Spherical Velocity Coordinates:

V = velocity vector's magnitude([ r 1)

A -- azimuth angle measuredclocAkwisefrom^the nzapaxis to the projection of
the velocity vector onto the Yap- Zapplane

A

/_ -- flight path angle measured from the xapaxls to the velocity vector

REFERENCE m
PLANE V

^ / \ i"_

^ z / \ A_.f" /

x

Figure 3-3. Local Plane System

3.2.4 TOPOCENTRIC LOCAL TANGENT (EAST/NORTH/UP)

Origin:

Reference Plane:

Principal Direction:

Observer (topocentric)

Plane tangent to the ellipsoidal Earth model at the ob-

server

Vector in the reference plane, pointed north

Rectangular Cartesian Coordinates (see Figure 3-4):

^
Xlt axis
A
Y _t axis
A
Z It axis

= axis lying in the reference plane that points east

= principal direction

= upward direction along the geodetic vertical
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Spherical Position Coordinates:

(The origin coincides with the tracking station, and g is directed at the satellite.)

O = station-to-spacecraft range

A = azimuth angle measured clockwise from the principal direction to the

projection of the position vector in the reference plane

E -- elevation angle measured from the reference plane to the station-to-

spacecraft position vector

A A

Zb Ylt .,t o

OBSERVE 

EQUATORIAL_ Yb

PLANE "

X b

Figure 3-4. Topocentric Coordinates

3.2.5 ORBIT PLANE

Origin:

Reference Plane:

Principal Direction:

Center of the reference body

Plane of the orbit

Radius vector from the origin to the satellite

Rectangular Cartesian Coordinates:

Xop^ axis = principal direction
A

Y op axis = in the orbital plane, 90 degrees ahead of the satellite in the sense
of the motion

z^op axis = direction along the vector F x r
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The following two alternative orbit plane systemsare defined; both have the sameorigin
and referenceplane as the basic system described above:

• The Keplerian system, which is denoted by Xp, yp, and zv , has its _p axis

(principal direction) directed towards the perifocus of the satellite orbit (see

Figures 3-5 and 3-6).

A

• The equinoctial system, which is denoted by Xep, Yep, and Zep, has its Xep axis

(principal direction) directed towards the "origin of longitudes." The "origin of

longitudes" lies in the plane of the orbit and is displaced by the angle _ from

the ascending node N_ where _ is the right ascension of the ascending node.

Unit vectors along the coordinate directions Xep, Yep, andzep are denoted by
A A

, g, w, respectively.

A

^ ^ ^ Z

Zop, Zp, Zep A

i
j ORBIT PLANE

EQUATORIAL ,,,,._,,.,,,._,.,_,.,,,

PLANE ;,,fii,,,'_ii_,,_ii,,,_ii,,,,_",_,,,,'_._'%'' ^ ELLITE^

Xop

PERIFOCUS

VERNAL EQUINOX ^
Xep

ORIGIN OF LONGITUDES

Figure 3-5. Orbit Plane Coordinates

3.2.6 ORBITAL ELEMENTS

Three types of orbital coordinates, which can be used to describe closed orbits, are pre-

sented below. Two sets of equinoctial and Herrick elements are defined such that the

elements and the corresponding equations of motion are nonsingular for inclinations of

both 0 degrees (direct set) and 180 degrees (retrograde set).
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%

A

tp

A

Xop

ORBITAL

PLANE

Figure 3-6. Orbital Parameters

Keplerian Elements (see Figures 3-5 and 3-6):

a

e =

i =

M

semimajor axis

eccentricity, specifying the elongation of the orbital conic section

inclination, specifying the orientation of the satellite's orbital plane with

respect to the equator of the central body

right ascension of the ascending node, i.e., the angle measured eastward

along the equator from the vernal equinox to the point where the satel-

lite crosses the equator traveling in a northerly direction

argument of perigee, i.e., the angle between the ascending node and the

perifocal point measured positive with increasing mean anomaly

mean anomaly, i.e., the sum of the mean anomaly at epoch and the

product of the mean motion and the elapsed time from epoch

Equinoctial Elements (see Figure 3-5):

a = semimajor axis
^

h = projection of the vector _- on the y ep axis

k -- projection of the vector _-on the Xep^ axis
A

p -- projection of the vector N- on the YepaXis
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q --- projection of the vector N" on the _epaxis

_, = mean longitude

where

_- = eccentricity vector pointing in the direction of the _v axis (perifocus)

and having a magnitude equal to the eccentricity, e

= nodal vector pointing in the direction of the ascending node and having

a magnitude equal to

where i denotes the orbital inclination, and j = +1 for direct orbits and -1 for retrograde

orbits.

Herrick Elements:

_- -- eccentricity vector (defined above) expressed in inertial Cartesian
coordinates

= angular momentum vector divided by ffi, where/_ is the gravitational

constant, i.e.,

_ x r

,f,.

and the vector g is expressed in inertial Cartesian coordinates

n = Kepler mean motion

2 = mean longitude

(Note: Only six of the eight scalar components above are independent. Single components

of the vectors _- and g are dependent upon the remaining six elements.)

3.2.7 VEHICLE-FIXED

Origin:

Reference Plane:

Principal Direction:

Center-of-gravity of the spacecraft

Plane containing the longitudinal and vertical axes defined

by the spacecraft designer

Longitudinal axis directed toward front of the spacecraft
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RectangularCartesian Coordinates (seeFigure 3-7):

^

xvaxis = longitudinal (roll) axis along the principal direction
A

Y v axis -- lateral (pitch) axis
^
z v axis = vertical (yaw) axis

Yv_ _\\

A

X v
a
Zv

Figure 3-7. Vehicle-Fixed Coordinates

3.3 SPECIFIC TRANSFORMATIONS

The spacecraft's state vector at a given time is obtained by integrating the equations of

motion. The equations of motion equate the acceleration of the vehicle to the sum of the

various accelerations acting on the vehicle and are valid only in an inertial reference

frame. However, the principal acceleration sources that act on the vehicle, i.e., gravity

and aerodynamic drag, are most easily expressed in terms of a body-fixed system. The

inertial position and velocity must therefore be transformed to body-fixed coordinates for

use in computing the gravity and drag accelerations. These accelerations, expressed in

terms of body-fixed axes, must then be transformed to the inertial coordinate system for

use in the numerical integration process. The tracking measurement computations, used

in the estimation process, also require body-fixed position and velocity coordinates of the

spacecraft. Thus, one of the most basic transformations in GTDS is that between the

inertial coordinate system and the body-fixed system. The following coordinate systems

are also used in GTDS to express the spacecraft position, velocity, and/or acceleration for

various purposes:

Body-Centered Equatorial Inertial. This system, when "frozen" at a specified

date, provides the basic coordinates for expressing the equations of motion
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derived from Newton's laws. In GTDS, an inertial coordinate system basedon
the B1950.0or J2000.0referencedate is used to locate the planets, Moon, and

spacecraft.

• Body-Centered Rotating. This system is used to characterize the gravitational

field and the atmospheric properties of the body.

• Local Plane. This system is used to orient the spacecraft velocity vector.

• Topocentric Local Tangent. This system is used to characterize ground-based

radar tracking observations of the spacecraft.

• Orbit Plane. This system is used to characterize the spacecraft orbital position

and motion.

• Vehicle-Fixed. This system is used to characterize propulsive and aerodynamic

forces acting on the spacecraft.

In the following subsections, the transformations from the mean equator and equinox of

B1950.0 and J2000.0 inertial coordinate systems to the body-fixed system are presented.

This is followed by descriptions of transformations relating the inertial coordinates to the

various other coordinate systems used in GTDS.

3.3.1 INERTIAL TO TRUE OF DATE

The equinox is defined as the intersection of the planes of the Earth's equator and the

ecliptic. The equator is defined as being normal to the Earth's polar axis. The motion of

the equinox is due to the combined motions of the two planes, the equator and the eclip-

tic, that define it. The motion of the celestial pole or of the equator is due to the gravita-

tional attraction of the Sun and Moon on the Earth's equatorial bulge. It consists of two

components: lunisolar precession and nutation (References 1, 2, 3). Lunisolar precession

is the smooth long-period westward motion of the equator's mean pole around the ecliptic

pole, and it has an amplitude of approximately 23.5 degrees and a period of approxi-

mately 26,000 years. Nutation is a relatively short-period motion that carries the actual

(or true) pole around the mean pole in a somewhat irregular curve, with an amplitude of

approximately 9 seconds of arc and a period of approximately 18.6 years. The motion of

the ecliptic (i.e., the mean plane of the Earth's orbit) is due to the planets' gravitational
attraction on the Earth and consists of a slow rotation of the ecliptic. This motion is

known as planetary precession and consists of an eastward movement of the equinox of

approximately 12 seconds of arc a century and a decrease of the obliquity of the ecliptic,

the angle between the ecliptic and the Earth's equator, of approximately 47 seconds of

arc a century. In astronomical work, the precessional motion of the equator and ecliptic,

called general precession, is considered separately from the nutational motion. Thus the
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"mean" equator and equinox are determined by neglecting nutation. The "true" equator
and equinox can then be obtained by correcting the mean equator and equinox for nuta-
tion.

3.3.1.1 J2000.0 Inertial to Mean of Date

Transformations from the mean of J2000.0 system into other mean of date coordinate

systems are given in this section (Reference 4).

The conventional expression for the Julian epoch, JE, is

JED - 2451545.0
JE = 2000.0 + (3-1)

365.25

where JED is the Julian ephemeris date. The Julian date 2451545.0 corresponds to

January 1.5, 2000.

A transformation between two mean of date systems is accomplished by performing three

rotations in succession. If a rotation matrix about a Cartesian z axis is denoted as Rz(a)

and a rotation matrix about a Cartesian x axis as Rx(a), then, as functions of the rotation

angle a, the elements of these rotation matrices are the following:

I cos a sin a 0 1
Rz(a) = -sin a cos a 0 (3-2)

0 0 1

1 0 0 1
Rx(a) = 0 cos a sin a (3-3)

0 -sin a cos a

The three rotations that must be performed in sequence to transform one mean of date

coordinate system with reference epoch E1 into another with a different epoch Ez are as

follows:

Rz(90° - =

Rx(0p) =

A A
rotation about the initial z axis that rotates the x axis to the

ascending node of the mean equator at the final epoch

rotation of the initial equatorial plane into the final equato-

rial plane about an axis that coincides with the ascending
node of the final mean equator of date on the initial equato-

rial plane
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Rz(90* + _p)
= rotation about the _ axis that rotates the _ axis to the de-

scending node of the initial mean equator

The precession parameters, _o, Op, and _p, are a set of rotation angles that depend on

the time. These angles are given by

_0 = (2306'.'2181 + 1'.'39656 T - 0'.'000139 T 2) t + (0'.'30188 - 0'.'000344 T)t 2

+ 0'.'017998 t 3

(3-4)

0p = (2004'.'3109 - 0'.'85330 T - 0'.'000217 T 2) t + (- 0'.'42665 - 0'.'000217 T) t 2

- 0'.'041833 t 3

(3-5)

_p = (2306'.'2181 + 1'.'39656 T - 0'.'000139 T 2) t +

+ 0'.'018203 t 3

(1'.'09468 + 0'.'000066 T)t 2
(3-6)

where

t = time in Julian centuries between the reference epoch, El, and the data

epoch, E2

T = time in Julian centuries (of 36525 days) between the reference epoch,

El, and epoch J2000.0; if E1 = J2000.0, T = 0, such that

T = Ea - 2451545.0 (3-7)
36525

Therefore, the total rotation matrix for precessing from the mean equator and equinox of

epoch E1 to the mean equator and equinox of epoch Ez can be expressed as

A = Rz(-90 - _jp) R×(0p) Rz(90 - ¢o) = [aij] (3-8)

Denoting the initial coordinates by R_ and the final coordinates by g2, the relationship can

be expressed by

F2 = A R--1 (3-9)

3-15



where the elements of A are

all = -sin _0sin _:p+ cos _o cos _p cos 0p (3-10a)

a12 = -cos tSo sin _p - sin _o cos _p cos 0p (3-10b)

a13 = -cos _p sin 0p (3-10c)

a21 = sin _o cos _p + cos _o sin _p cos 0p (3-1oo)

a22 = cos _0 cos _p - sin _o sin _p cos 0p (3-10e)

a23 = -sin _p sin 0p (3-10f)

a31 = cos _o sin 0p (3-10g)

a32 = -sin _o sin Op (3-1Oh)

a33 = cos 0p (3-10i)

The matrix A enables a precession from the mean equator and equinox of any initial

epoch E1 within approximately one or two Julian centuries of the reference epoch

J2000.0 to any final epoch E2 within the same timespan with acceptable accuracy. Thus,

a mean of date equator and equinox coordinate system can be defined for any year. Since

the time derivative of A can be assumed to be negligible, the velocity coordinates are

transformed as

r2 = A R1 (3-11)

Similarly, due to the orthonormality of the transformation from mean of J2000.0 to any

other mean of date coordinate system, a precession is possible from any mean of date

coordinate system back to the mean of J2000.0 by simply using the transpose of the A

matrix calculated above. Thus, the following relations hold for position and velocity:

F2 = A R--1 (3-12)
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R_ = A T r2 (3-13)

where the superscript T denotes the transpose of the matrix.

3.3.1.2 B1950.0 Inertial to Mean of Date

The B1950.0 inertial coordinates are transformed into the mean equator and equinox of

date by correcting only for precession. This is done by the following three rotations (see

Figure 3-8):

Rz(_r/2 - _o)

Rx(0p)

Rz(- :rr/2 - _p)

= rotation about the _ axis that rotates the x axis to the as-

cending node of the mean equator of date

= rotation of the B1950.0 equatorial plane into the mean equa-

torial plane of date about an axis that coincides with the as-

cending node of the mean equator of date on the B1950.0

equatorial plane
A • A

= rotation about the ZEaX_S that rotates the x E axis to the de-

scending node of the mean equator of B1950.0

The orthogonal transformations are defined as follows:

Rz(a) =
I cos a sin a 01

-sin a cos a 0

0 0 1

(3-14)

1 0 0 1
R×(a) = 0 cos a sin a

0 -sin a cos a

(3-15)

The angles _o, 0p, and _p are given by (Reference 5)

_o = 2304'.'9969 Tu + 0'.'302000 T_j + 0'.'01808 T 3 (3-16)

0p = 2004'.'2980 Tu - 0'.'425936 T2u - 0'.'04160 T3u (3-17)

_p = 2304'.'9969 Tu + 1'.'092999 T_r + 0'.'019200 T 3 (3-18)
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Figure 3-8. Precession Angles

where

T U = time in Julian centuries of 36525 days elapsed from 1950.0

The total rotation matrix can be expressed as

A = Rz _- _:p Rx(0p)Rz -_'o = {aij} (3-19)

Denoting the B1950.0 coordinates by _ and the mean equator and equinox of date by rE

yields

fE = A R- (3-20)

where the elements of A are

aal = -sin _o sin _p + cos _0 cos _p cos 0p (3-21a)
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a12 = -cos _osin _p - sin t_o cos _p cos Op (3-21b)

aa3 = -cos _p sin Op (3-21c)

a21 = sin ¢o cos _p + cos t5o sin _p cos Op (3-21d)

a22 = cos _o cos _p - sin _o sin _p cos Op (3-21e)

a23 = -sin _p sin Op (3-21f)

a31 = cos _o sin Op (3-21g)

a32 = -sin _o sin Op (3-21h)

a33 = cos Op (3-21i)

The time derivative of A is assumed to be negligible; therefore, the velocity coordinates

are transformed as follows:

- -- (3-22)rE = AR

3.3.1.3 Mean of Date to True of Date

The transformation from the mean equator and equinox of date to the true of date system

involves correcting for the nutation effect. Nutation is measured as cyclic changes in the

obliquity, the angle between the equatorial plane and the ecliptic, and the longitude of the

equinox. These changes in obliquity, de, and longitude, d_p, are assumed known. They

are input to GTDS by fitting polynomials through the JPL ephemeris data (Reference 6)

as described in Section 3.6.

Defining

-- difference between the true obliquity (et)and the mean

obliquity (em)
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true obliquity measured from the true equator to the ecliptic

nutation in longitude, which is the true longitude of date of
the mean equinox of date

the rotation from the mean equator and equinox of date to the true equator and equinox
is given by the following three rotations (seeFigure 3-9):

Rx(Em) --

Rz(- =
Rx(- et) =

A
rotation about the x E axis through the mean obliquity to the

ecliptic of date

rotation about the ecliptic pole, through the nutation in longitude
A

rotation about the x axis through the true obliquity to the

true equator of date

where R× and Rz are given by Equation (3-1).

ECLIPTIC POLE

_E

x

x E

ECLIPTIC OF DATE

RUE EQUATOR OF DATE

Figure 3-9. Nutation Angles

The total rotation matrix can be expressed as

N = Rx(- _t) Rz(- 6_) Rx(Em) = {nij} (3-23)
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Denoting the true of date coordinates by _-yields

= N gz (3-24)

where the elementsof N are

nll --- cos 6_ (3-25a)

n12 = -sin 6_p cos Em (3-25b)

n13 = -sin 6_ sin Em (3-25c)

n21 = sin 6_ cos Et (3-25d)

n22 = cos _ cos Et cos Em + sin et sin em (3-25e)

n23 = cos _ cos Et sin Em - sin Et cos Em (3-25f)

n31 = sin dl_0 cos et (3-25g)

n32 = cos _ sin et cos em- cos et sin em (3-25h)

n33 = cos (_ sin et sin E"m + COS £t COS E"m (3-25i)

The time derivative N is assumed to be negligible. Therefore, the velocity coordinates are

transformed as follows:

r = N rE (3-26)

In the J2000.0 system, the mean obliquity is given by (Reference 7)

Em -- 23*.43929111 - 0.*0130047 T - 0.'1639(10 -6) T 2 + 0..5036(10 -6) T 3 (3-27)

where T -- time in Julian centuries of 36525 days elapsed from J2000.0
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The definition of the mean obliquity of date in the B1950.0 system (Reference 1) is given

by

em = 23*.445788 - 0.*0130139 T - 0.*00000091 T 2 + 0.'506(10 -6) T 3 (3-28)

where

T -- time in tropical centuries (of 36524.2198 mean solar days) elapsed

from the B1950.0 epoch to the date specified

3.3.1.4 Summary

The transformation matrix from inertial mean of J2000.0 or B1950.0 to true of date coor-

dinates is given by

t- = C R (3-29)

where

C = N(6_, 6e)A(_o, 0p, _:p) (3-30)

The elements of the precession matrix, A, are given in Sections 3.3.1.1 and 3.3.1.2 for

the J2000.0 and B1950.0 coordinate systems, respectively; and the elements of the nuta-

tion matrix, N, are given in Equations (3-25). In GTDS, the C-matrix is synthesized dur-

ing preprocessing computations using precession angles obtained by means of

Equations (3-16) and (3-17) and nutation angles obtained from an ephemeris tape pro-

vided by the Jet Propulsion Laboratory. The elements of C are stored on the Solar/Lunar/

Planetary (SLP) Ephemeris File, as described in Section 3.6, for retrieval and use during

program execution.

GTDS has also been provided with the optional capability to solve the equations of motion

in a true of "reference date" coordinate system, designated by g*, where the reference

date is specified. The orthogonal transformation in Equation (3-29) involves two times:

the date of the true coordinates, denoted by t, and the epoch of the mean inertial system,
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denoted by TM (either B1950.0 or J2000.0). Therefore, using the notation defined in

Section 3.2.1, Equation (3-29) can be written as

m

g = C(t, TM) R (3-31)

or

= cT(t, TM) r- (3-32)

where the superscript T denotes transpose.

Specifying the reference date for the true of reference date system by t*, then

t-* = C(t*, TM) R- (3-33)

or

R- = cT(t *, TM) f* (3-34)

The transformation from true of reference date to true of date coordinates is obtained

from Equations (3-31) through (3-34) to be

t-= C(t, TM) cT(t *, TM) f* (3-35)

This equation permits problems to be solved using a true of reference date coordinate

system as the inertial frame but requires only the precession/nutation matrix, C(t, TM),

which is available on the SLP Ephemeris File.

Note that the transformation matrix in Equation (3-35) is the identity matrix when t = t*.

GTDS utilizes this property and neglects precession and nutation when a true of reference

date option is specified. This requires that the problem time, spanned by t, must be

relatively short and in the proximity of the reference date, t*.

3.3.2 TRUE OF DATE TO BODY-FIXED

The transformation that relates the true of date coordinates to the body-fixed coordinates

accounts for two separate effects. The first relates the true vernal equinox to the prime
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meridian of the rotating Earth by meansof the angle a 8 , the true of date right ascension

of Greenwich (see Figure 3-10). The second effect, called polar motion, accounts for the

fact that the pole of the body-fixed axis, _b, does not coincide with the body's spin axis,
A
z, the pole of the true of date geocentric axes. The first of these effects transforms the

t # t

true of date coordinates to pseudo body-fixed coordinates, xb, Yb, zb. These pseudo coor-
t

dinates would be precisely the body-fixed coordinates, Xb, Yb, Zb, if Zb = Zb, that is, if

polar motion were omitted.

3.3.2.1 True of Date to Pseudo Body-Fixed

The transformation from the true of date to the pseudo body-fixed coordinates consists of

a rotation about the true of date ẑ axis through the true right ascension of Greenwich, ag

(see Figure 3-10), yielding

r cos ag sin ag 0 1
BI= R_(a_)= l-sin a s cos a s 0

k o 0 1

(3-36)

The true of date right ascension of Greenwich, ag, is measured easterly from the true

vernal equinox to Greenwich. A related quantity is the Greenwich hour angle, also called

the true Greenwich sidereal time, which is measured westerly in the plane of the equator

from Greenwich to the true vernal equinox. Thus, although their definitions differ, the

right ascension of Greenwich, ag, and the Greenwich sidereal time and hour angle are

EQUATOR

x
VERNAL

EQUINOX

GREENWICH
/ MERIDIAN

..._y

x b

Figure 3-10. True of Date Right Ascension of Greenwich
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equal in magnitude. In the B1950.0reference frame, the true Greenwich sidereal time is
obtained from the mean Greenwichsidereal time, aGM, (Reference 2) as

aGM = UT1 + 6 h 38 m 45s.836 + 8640184_-542Tu + 0s.0929Tu 2 (3-37a)

by applying the correction

ag = a_M + AH (3-37b)

where

AH = d_p cos (e,) (3-38)

The nutation in longitude, 6_p, and true obliquity, et, are discussed in Section 3.3.1.3.

The times UT1 and Tu in Equation (3-37a) are

UT1

ru

= Greenwich universal time measured from midnight (epoch) to time

t; UT1 is positive for t after midnight and negative for t before mid-

night

= number of Julian centuries elapsed from 12 hours UT1 January 0,

1900 (JD = 2415020.0) to the UT1 time of epoch

Using the J2000.0 reference frame, the mean Greenwich sidereal time, aGM, is defined as

the right ascension of the fictitious mean Sun minus 12 hours plus the time of day in UT1

(universal time corrected for polar motion). The mean Geenwich sidereal time is ex-

pressed in units of radians as

aCM = t 0) + [6h41m50s-54841 + 8640184s. 812866 Tu

+ 0s'093104 T2 - 6s'2 (10-6) T31 86-4-00

(3-39a)

t =

Earth's rotation rate in radians per second

universal time (UT) measured in seconds from 0hUT1 of the date of

the computations
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Tu = number of UT Julian centuries elapsed from epoch J2000.0 to Oh UT1
of the date

and the superscripts h, m, s indicate hour, minutes, and seconds, respectively.

The equation consists of two parts, one a polynomial series in Tu that computes the aaM

at Oh UT1 of the epoch, and a second part that computes the rotation of the Earth from

the beginning of the UT1 day to the time of the computation.

The true Greenwich hour angle, ag, is then computed by applying the correction, AH,

from the nutation in longitude and obliquity to aoM, as

ag = aOM + (3-39b)

where

AH = (&p) cos (et) (3-39c)

The true of date coordinates transform into the pseudo body-fixed coordinates as follows:

-- B1 t- (3-40)

Differentiation yields the velocity transformation

.s

r-b = B1 r + 131 t- (3-41)

where

-sin ag cos a s il131 =_-c 0 as -Sino a$

ag (3-42)

and where hg is the rotation rate of the Earth and is considered constant.

3.3.2.2 Pseudo Body-Fixed to Body-Fixed (Reference 3)

The Earth's axis of figure (i.e., the principal moment of inertia) is not coincident with the

spin axis, and it moves with respect to the latter causing the polar motion effect. The path
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of the spin axis on the Earth's surface is "semiregular" but unpredictable due to random

shifts in the Earth's crust, etc. Therefore, motion of the spin axis pole is given with

respect to the pole at some established epoch. The pole at the established epoch is re-

ferred to as the adopted pole (PA) and corresponds to the pole of the body-fixed axes,
A A A
Xb, Yb, Zb, while the present position of the spin axis pole is referred to as the true

pole (PT).

The adopted pole used in GTDS corresponds to the mean pole of 1903.0, which is consis-

tent with that used by the International Polar Motion Service. Due to the small size of the

polar motion correction (it takes place in squares of less than 30 meters), the polar region

of the Earth can be considered a plane. A geocentric rectangular coordinate system is

established with the _b axis passing through PA, the _p axis parallel to the _b axis and^
directed along the Greenwich meridian, and the _p axis parallel to the negative Yb axis

and directed along the meridian of 90 degrees west (see Figure 3-11). The coordinates of

the instantaneous pole, PT, are measured in terms of the Xp and Yp components using

units of seconds of arc. (The coordinates xp and yp are periodically measured by the

International Polar Motion Service and supplied to interested users by the United States

Naval Observatory (USNO).)

A

A A* A Yp

Yp Zb Zb

PT [INSTANTANEOUS _ _bt _." Xp

^)r _ Yb
Xb

Figure 3-11. Polar Motion Schematic

To derive the expressions for the effects of Xp and yp on a point's latitude and longitude,

these two quantities are shown in relation to a regular right-handed orthogonal-rectangular
A

coordinate system whose ^ ^z b axis passes through PA and whose x b - zb plane passes
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through Greenwich. In this system, the adopted longitude of a point ;IA is measured
positive in an eastward direction from _b. The following notation is used:

;IA -- adopted longitude

_A = adopted latitude

;IT = instantaneous longitude with respect to (_'t,, Yb,A' Zb)^,
A, A,

_T = instantaneous latitude with respect to (Xb, Yb, _'b)

A_ = _T - _g = difference between the adopted and true latitude

= ;IT - ;IA = difference between the adopted and true longitude

_A_ A,Let _x and ;ix be measured in the pseudo body-fixed coordinate system ( , Yb, _'b)
whose A, ^,Z b axis passes through PT and whose x b axis lies in the AZb - Xb meridian,

r

displaced from XAbby the angle xp. The vector in the (_b, _b, _b) and (xA'b, _b, _'b)

systems can then be written as

EXblEc°sc°s AlYb = r b COS 0A sin ;IA

Zb sin q_A

(3-43)

and

x cos CT COS;IT

[y,u[ = rb cos _T sin ;LT
[__Z b ._] sin _T

(3-44)

The two systems are related by

Ex lYb = R((xp)

Zb

RxT(yp)
x! 
Zb__]

(3-45)
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whereRx is given in Equation (3-14) and Ry is

Ry(a) = cos o - sin 1
1 0

/sin a 0 cos a
I...

(3-46)

The resulting transformation is

I cos Xp sin Xp sin yp sin Xp cos yp-]t-b = 0 COS yp - sin yp __ r-b
-sin Xp cos Xp sin yp cos Xp cos yp

(3-47)

The error made by neglecting the polar motion transformation defined by Equation (3-47)

increases linearly with It-hi. A worst-case, order-of-magnitude indication of this error is

given in Figure 3-12. The figure also shows the band of uncertainty in Igu - g_l as a

result of a +2-meter uncertainty in the measurement of the polar motion coordinates, xp

and Yp.

Since xp and Yp are small, all cosine terms are equated to unity, all sine terms equated to

their angles, and all products neglected. Thus, the transformation defined by Equa-

tion (3-28) simplifies to

I 1 0 Xpl
gu - 0 1 -Yp fb = B2_ (3-48)

- Xp yp 1

The worst-case error made by using the simplified transformation matrix is insignificant.

For example, at lunar distances the error amounts to less than a centimeter.

In order to obtain the relationships between 2T, 21, _A, and _T, the following formulas

can be used:

_T -- _A = A_) = Xp COS 2 A - yp sin 2A (3-49)

2 T -- 2 A = /_ = tan _)A(Xp sin 2A + yp COS 2a) (3-50)
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Figure 3-12. Polar Motion Errors

GTDS uses the simplified transformation matrix defined in Equation (3-48). The instanta-

neous coordinates of the pole, xp and Yp, are obtained by evaluating predefined cubic

polynomials at the given date, as follows:

Xp =ai] + ai2T + ai3 T2 + ai4 T3 (3-51)

Yp = ai5 + ai6T + ai7 T2 + aisT 3 (3-52)
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"-- where

xp -- x polar coordinate, seconds of arc

yp = y polar coordinate, seconds of arc

and T is the number of days from the beginning of the timespan covered by the polyno-

mial, e.g., T = 1, 2, .... For a given modified Julian date, MJD, T is given by

T --- MJD - MJDi + 1 (3-53)

where MJDi is the tabular modified Julian date that bounds the interval from below, i.e.,

MJDi -< MJD < MJDi+1 (3-54)

The coefficients a U and associated timespans are determined by least-squares fitting of

cubic polynomials to published daily polar motion data. The timespans are determined by

constraining the maximum deviation (between the data and polynomial) to be less than

0.01 second of arc. These data are updated periodically as current data from the USNO

become available. The last set of coefficients can be used to obtain extrapolated values of

the polar motion coordinates for a short time in the future.

3.3.2.3 Summary

The complete transformation between the true of date coordinate system and the body-

fixed system is given by

Fb = B2(xp, yp)Bl(a_)t-= B t- (3-55)

where B = B2 B1, with B1 given in Equation (3-36) and B2 in Equation (3-48).

The time derivative of B2 is negligible; therefore, the velocity is transformed as follows:

- (3-56)rb = B2 B1 r + B2 ]31 F

where ]31 is given by Equation (3-42).

3.3.3 SELENOCENTRIC TRUE OF DATE TO SELENOGRAPHIC

(REFERENCES 1, 3, 5, AND 8)

The lunar landmarks and gravitational potential are referenced to a lunar-centered, body-

fixed (selenographic) coordinate system. Similar to the Earth's geographic system, the
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selenographic system reference plane is the lunar equator which contains the
A A

Yb axes. The z b axis is directed towards the lunar axis of rotation.

A
x b and

The Moon's mean rotation is described by the following three empirical laws of Cassini:

o The mean axis of rotation is fixed in the Moon, perpendicular to the mean

lunar equator; the mean period of rotation is equal to the mean sidereal period

of revolution of the Moon around the Earth.

2. The mean lunar equator intersects the ecliptic of date at a constant inclination,

Ira, for which the currently accepted value is 1 degree, 32.1 minutes.

. The mean lunar equator, the ecliptic, and the lunar orbit plane meet in the line

of modes of the lunar orbit, with the descending node of the equator at the

ascending node of the orbit. The angle i, between the lunar orbit plane and the

ecliptic, is a constant (the currently accepted value is 5 degrees, 8 minutes) as

is the angle i + IM between the mean lunar equator and the lunar orbit plane.

The ecliptic is seen to always lie between the mean lunar equator and the lunar

orbit plane.

The oscillation of the actual rotational motion about the mean rotation is called the physi-

cal libration. The physical libration consists of small pendulous oscillations, never exceed-

ing approximately 0.04 degree (in selenographic latitude and longitude), and are caused

by deformations in the Moon's figure.

As a result of the first law of Cassini, the principal direction of the selenographic system
A

( x b axis direction) defines the lunar prime meridian and has been chosen so that it is, on
A

the average, directed towards the center of the Earth disc. The x b axis passes through the

Sinus Medii (Central Bay) on the lunar surface. Specifically, the _b axis is defined to be

coincident with the vector pointing from the center of the Moon to the center of the Earth,

if the Moon were at the mean ascending node when the node coincided with either mean

perigee or mean apogee.

To transform from the inertial system to the selenographic system, a lunar-centered

(selenocentric) coordinate system is defined, which is parallel to the Earth-centered Car-

tesian true of date system. The selenographic system ( ^ ^Xb, Yb' _b) is oriented relative to
A A

the selenocentric system (x, y, _) by the Euler angles Q', is, and A shown in Fig-

ures 3-13a and 3-14.
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Figure 3-13. Selenocentric/Selenographic Geometry
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Figure 3-14. Selenographic Transformation Angles

The transformation between the selenocentric and selenographic systems is

fb=Mf (3-57)

where

M = Rz(A) Rx(is) Rz(Q') (3-58)

withRx and Rz given by Equation (3-14). The elements of M are

mll = cos A cos f_' - sin A sin ff_' cos is (3-59a)

mn = cos A sin f_' + sinA cos Q' cos is (3-59b)

m13 = sin A sin is (3-59c)
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m21 = -sinAcos Q' - cos Acos Q' cos i_ (3-59d)

m22 = -sinA sing?' + cosAcos g?' cos is (3-59e)

m23 = cos A sin i, (3-59f)

m31 = sin g2' sin is (3-59g)

m32 = -cos f_' sin i, (3-59h)

m33 = cos is (3-59i)

Because of the relationship between the Moon's mean position and the orientation of the

lunar selenographic coordinates, the determination of the Euler angles g2', is, and A

necessarily involves the Moon's mean orbit.

Figure 3-13b can be used to relate orbital motion to the lunar-centered-axes system. It
A A

shows the "ecliptic" plane (Xeeliptic - Yecliptic), which passes through the center of the

Moon and is parallel to the ecliptic. The lunar equator and orbit planes are shown inter-

secting in a line on the "ecliptic" plane. The _¢b axis is shown in the lunar equator. In this

Moon-relative coordinate frame, the Earth can be considered as orbiting the Moon (the

origin) in exactly the same orbit as the Moon orbits the Earth, except that longitude

angles measured in the orbit plane must be reduced by 180 degrees. For example, when

the Earth is at the descending node and the _b axis points toward N in Figure 3-13b, the

Moon is, in reality, at its ascending node, 180 degrees advanced from N. Therefore, the

longitude of the ascending node, f2, and the mean longitude, 2, must be reduced by

180 degrees when used in the Moon-relative frame. The selenographic axes can be ori-

ented to the selenocentric axes by means of the following four angles:

Et

I

0

= true obliquity

-- longitude of the descending node

= inclination of the lunar equator to the ecliptic planes

= angle measured in the lunar equator between the descending node

and the Moon's prime meridian
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These anglesare shown in Figure 3-13b, and the transformation is

t-u = M' t- (3-60)

where

M' = R_(0) Rx(I) Rz(_ - #) R_(E,) (3-61)

The elements of M' are

mn = -cos 0 cos Q + sin 0 cos I sin Q
(3-62a)

ma2 = -cos0 sin Q cos et - sin 0(cosI cos ff_ cos e, + sin I sin E,) (3-62b)

m13 =

m21 =

-cos (9 sin fl sin (?t - sin (9 (cos I cos g2 sin Et -

sin (9 cos fl + cos (9 cosI sin g2

sin I cos E,) (3-62c)

(3-620)

mn = sin (9 sin if2 cos e, - cos (9 (cos I cos f_ cos Et + sin I sin Et) (3-62e)

m23 = sin (9 sin ff_ sin e, - cos 0(cosI cos Q sin e, - sinI cos Et) (3-62f)

m31 = - sin I sin Q

m32 = sin I cos Q cos e, - cos I sin (?t

(3-62g)

(3-62h)

m33 = sin I cos _ sin e, + cos I cos e, (3-62i)

The Euler angles fl', i,, and A are determined as functions of the orbital parameters

et, Q, I, and (9 by equating elements of the M and M' matrices. Equating m33 and m'33

yields

cos is = sin I cos Q sin e, + cos I cos et (3-63)
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sin i, = _/1 - cos 2 is (3-64)

# t

Equating m31 and m32 to m31 and m32, respectively, yields

sin t' = -sin I sin _2 (3-65)
sin i,

cos t' = cos I sin et- sinlcos t cos e, (3-66)
sin is

Equating
n #

m13 and m23 to m13 and m23, respectively, yields

A = A + 0 (3-67)

where the parameter A, shown in Figure 3-14, is obtained from

sin A = -sin _2 sin e, (3-68)
sin is

cos A = sinlcos e, - cos Icos Q sin et (3-69)
sin is

The angle 0, measured along the lunar equator from the descending node to the lunar

prime meridian, must be determined from the orbital motion of the Moon. As a result of

Cassini's first law, the mean rate of rotation is equated to the mean orbital rate, resulting

in

OM = '_'M -- _'2M (3-70)

where 2 is the mean longitude of the Moon, t is the longitude of the ascending node,

and the subscript M denotes mean values. Correcting Equation (3-70) for lunar physical

librations gives the true value of 0

0 = ()I.M + rM) - (tiM + aM) (3-71)
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Correcting ff_ and I in Equations (3-63) through (3-69) for nutation and libration yields
their true values

Q = QM + aM + &P (3-72)

I = IM + QM

The longitude of the mean ascending node of the lunar orbit is (Reference 5)

f_M = 1271127902 - 070529539222 de + 0.'20795(10 -2) Te
(3-74)

+ 072081(10 -2) T_ + 072(10 -5) T 3

the inclination of the mean lunar equator to the ecliptic is

IM = 1"32'.1 (3-75)

and the geocentric mean longitude of the Moon is

2M = 64737545167 + 1371763965268 de - 071131575(10 -2 ) Te

(3-76)

- 07113015(10 -2) T 2 + 0719(10 -5) T_

(3-73)

The Te and de variables in the above equations correspond to the number of Julian

centuries of 36525 Julian ephemeris days past Oh January 1, 1950 ET, and the number of

ephemeris days past the same date, respectively.

The nutation in longitude, 6_p, and the true obliquity, et, are given in Section 3.3.1.3.

The physical librations, determined by Hayn, in longitude of the ascending node, aM,

inclination, OM, and mean longitude, rM, are as follows:

tTM = [-070302777 sin g + 070102777 sin (g + 20)M)

- 0.'305555(10 -2) sin (2g + 2(.OM)]/sin IM

(3-77)

QM = -070297222 cos g + 0.*0102777 cos (g + 209M)

- 0.'305555(10 -2) COS (2g + 20)M)

(3-78)

r M = -073333(10 -2) sin g + 070163888 sin g' + 075(10 -2) sin (209M) (3-79)
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where the parameter g is the Moon's mean anomaly

g = 215".54013+ 13".064992de (3-80)

the parameter g' is the Sun's mean anomaly

g' --- 358.*009067 + 0*.9856005 de (3-81)

and a_M is the Moon's argument of perigee

O)M = 196..745632 + 0.*1643586 de (3-82)

The variables above are substituted into Equations (3-63) through (3-67) to yield the

Euler angles f2', is, and A required in the selenocentric-to-selenographic transformation

given by Equations (3-57) through (3-59).

The velocity transformation from selenocentric to selenographic coordinates is obtained

by differentiating Equation (3-57), yielding

- (3-83)
ru = Mr + Ivlt-

The time derivative of M is obtained by differentiating its elements in Equation (3-39)

with f2 and is assumed zero, i.e.,

F m21 m22 m23-_
- m12

lVl---/k _-O 11 0 -O13J (3-84)

The time derivative of A is obtained by differentiating Equation (3-67) after substituting

Equation (3-71) for 0. The resulting time derivative is

k = ,i + iM + iM + tim - bM (3-85)

where

--COS (QM + O'M + A_D) sin Et(_:']M + bM) (3-86)

sin i_ cos A

iM = 0.266170762(10-5) - 0-12499171(10-13) Te
(3-87)
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QM = -0.1069698435(10 -7) + 0.23015329(10 -13) Te (3-88)

and

-0.1535272946(10 -9 ) cos g + 0.569494067(10 -a°) cos g'

+ 0.579473484(10 -11) cos 209M

(3-89)

-0.520642191(10 -7) COS g + 0.1811774451(10 -7) COS (g + 2OM)

- 0.1064057858(10 -7) COS (2_OM + 2g)

(3-90)

3.3.4 SPHERICAL-CARTESIAN TRANSFORMATIONS (REFERENCE 9)

The coordinate transformations between the spherical and Cartesian systems are de-

scribed in the following subsections.

3.3.4.1 Spherical Position and Velocity to Cartesian Coordinates

Using the spherical position coordinates, r, a, and 6, that are defined in Section 3.2.1,

the transformation to Cartesian coordinates is seen from Figure 3-1 to be

x COS 6 cos a

y = r cos 6 sin a

z sin 6

(3-91)

To transform the spherical velocity coordinates, V, fl, and A, described in Section 3.2.3,

it is convenient to transform to the local plane coordinate system (see Figure 3-3) and

then to the body-centered inertial Cartesian coordinate system. If the local plane coordi-

nates, Xlp, y_p, and z_p, are fixed inertially (nonrotating), _p, can be expressed as

r:qp =  z,p] = v [sin A sin fl (3-92)
zlp._l Lcos A sin fl
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The transformation betweenthe local plane and the body-centeredinertial Cartesiancoor-
dinate systemsis

rip = Dr" (3-93)

where

D

-"1

I cos 6 cos a cos 6 sin a sin 6 |
-sin a cos a 0 J

-sin _ cos a -sin _ sin a cos

(3-94)

Since the local plane system is fixed inertially, the velocity vector in Equation (3-92) can

be transformed to the body-centered inertial Cartesian axes by means of the transforma-

tion D, as follows:

r = D r hp (3-95)

, =

The partial derivatives of _ and r with respect to r, a, _, V, A, and 13 are

Of- g (3-96)

0r r

Oa

F-z cos t2 1
0t- = [_z sin a (3-98)

06 L ] x2 + y2

Or- _ Or- Off Or = 0 (3-99)

oV 0A 0// 0r
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 cosa_. sin a

_ = V(cos '8 cos _ - cos A sin '8 sin 6

(3-101)

OV V
(3-102)

Fsin '8(sin A sin 6 cos a - cos A sin a'_
a r = V in '8(sin A sin d sin a + cos A cos a

aA L s -sin A cos 6 sin fl / (3-103)

Or r-'|cos a(cos d sin '8 + sin d cos '8 cos A) + sin a cos '8 sin A'q

a'8 - -V Lsin a(cos 6 Sinsin,8 '8+ sinSind6 _C°Scos'8 'sC°ScosA)d-cosCOSAa cos '8 sin Aj(3-104)

3.3.4.2 Cartesian Position and Velocity to Spherical Coordinates

The inverse of the preceding transformations is described in the following text. The

spherical radius, r, is given by

r = _/x 2 + y2 + Z2 (3-105)

From Figure 3-1, the right ascension, a, and declination, 6, of g are

Y

sin a = ix2+ y2 (0 --< a _< 2_r) (3-106a)

X

cos a = Ix2 + y2 (0 < a _< 2er) (3-106b)

and

z=- - _< d <__ (3-107a)
r
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r

The right ascension is measured positive east from the inertial _ axis. The declination is

measured positive north from the _ - _ plane.

The velocity vector's magnitude is

v = + + (3-1o8)

and the azimuth, A, and flight path angle, fl, are obtained from the local plane compo-

nents of velocity as follows:

sin A = )'iv
(0 -< A -< 2_) (3-109a)

COS A = ZlP
(0 _< A <_ 2_) (3-109b)

and

sin fl =
_/_'lzp + Z_l, (0 -< fl -< z) (3-110a)

V

COS fl- Xlp (0 <-- fl -< _) (3-1lOb)
V

The azimuth and flight path angles can be obtained alternatively from the vector products

of t- and r as follows:

^ ^ (3-111a)
sin A = Uz_p UN
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COS A =

A A

u,,_ "(uN × rO (3-111b)

and

ir /-Ix
sin fl = "'

rV
(3-112a)

COS fl =

r- • r

rV
(3-112b)

A

where Uztp is the unit vector in the

the body-centered Cartesian system

A

z lp axis direction and has components expressed in

^

Uzlp - in cos21
sin t_ sin

COS (_

A

and UN is the unit vector normal to t" and r given by

m

^ t-xV
UN = I_x v-I

(3-113)

(3-114)

Substituting Equations (3-87) and (3-88) into Equation (3-85) yields

sin A = (x)' - y_)
rV sinflcos 6

(3-115)

cos A = y(yi - zy) + x(xi - xz)
r2V sin fl cos 6

(3-116)

The partial derivatives of r, a, 6, V, A, and fl with respect to f and r are

ar FT

o_ r (3-117)
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T

(3-118)

06 1 zy

0V r 2_/x2 + y2 x + y2)

T

(3-119)

ov [oV
OF

(3-120)

0A 1

or (V2 _ ;2)(x2 + y2)

- (y(rz - zr) - (xy - yx) xz - zx
r

-_¢(rz - zr) + (xy - yx) yz - zY +
r

(x_ - yx)(x 2 + y2) i
r 2

T

(3-121)

OF r2 v/V2 _ i.2

(3-122)

Or Oa 06

Or Or Or
(3-123)

av F
Or v

(3-124)

(zy - yz)'] T
Or r (V 2 - _2) (y)k xy)[

(3-125)
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and

Off 1 I__ FTF F1T
Or = r2_/v 2- i.2 V 2

(3-126)

3.3.5 BODY-CENTERED TRUE OF DATE TO ORBIT PLANE

The unit vectors in the Xop, Yop, and Zop directions (see Figure 3-5), measured in the

body-centered true of date coordinate system, are

^ t-o
U = (3-127)

I ol

^ ^ ^ (3-128)V=W x U

A Fox ro
W = (3-129)

IFo× rol

where t-o and ro are the Earth-centered position and velocity vectors used to determine

the orbit plane coordinate system. If Equations (3-127) through (3-129) are expanded,

they yield the following transformation relations between the orbit plane coordinates and

the body-centered inertial Cartesian coordinates:

rop = E F (3-130)

where

Ux Uy Uz 1
E = Vx Vy Vz (3-131)

Wx Wy Wz

Regarding the orbit plane system as fixed inertially, the velocity transforms as follows:

rop = E r (3-132)
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and the position and velocity partial derivatives are

Ogo______p_ Orop = E (3-133)

or Or

3.3.6 BODY-FIXED TO GEOGRAPHIC TRANSFORMATIONS

The transformations between the body-centered rotating coordinate system and the geo-

graphic coordinates are described in Section 3.2.2. The transformation involves modeling

the body's mean figure. The following subsections present the equations for an ellipsoidal

Earth model as well as the transformations and partial derivatives relating the geodetic

coordinates (h, 2, _) to the body-centered rotating coordinates (Xb, Yb, Zb).

3.3.6.1 Earth Figure (Reference 9)

The shape of the Earth's surface is very nearly an ellipsoid of revolution. A satisfactory

means for modeling the Earth is to characterize it as such and, where necessary, correct

local deflections of the vertical (e.g., correct local astronomic zenith to ellipsoidal verti-

cal). The polar axis of symmetry of the ellipsoid, _b, is nearly colinear with the Earth's
AA

spin axis. The ellipsoid's radius is greatest in the xb - Yb equatorial plane. If Re de-

notes the equatorial radius, Rp the polar radius, and xs, Ys, and zs the coordinates of a

point s on the ellipsoidal surface expressed in the body-centered rotating axis, then the

coordinates of s must satisfy the following equation:

x_ ys2 z_ = 1 (3-134)
R7

Two convenient parameters that describe the elliptical cross-section are the flattening

coefficient, f, defined by

f = Re- Rp > 0 (3-135)
Re

and the eccentricity, e, defined by

2

e21 f, (3-136)
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Since the ellipsoid is symmetrical about the _b axis, there is no loss of generality in

restricting the analysis to the _b - _b plane. The two-dimensional analysis utilizes the

symbol Xb' or xs, to denote that the Yb component is omitted.

The equation of the cross-section of the ellipsoid is

x_, + = P_ (3-137)
(1 - e2)

The equation for the normal to the ellipsoid is

tan _ = dxs, (3-138)
dzs

where _ is the geodetic latitude shown in Figure 3-15. Differentiating Equation (3-137)

and substituting the results into Equation (3-138) yields

Zs = (1 - e 2) tan _ (3-139)
Xs_

Solving Equations (3-137) and (3-139) simultaneously for xs, yields

Re cos _ (3-140)
xs, = _/1 - e2 sin 2 _b

From Figure 3-15, it can be shown that

xs, = N cos _ (3-141)

zs = rs sin _' = N(1 - e 2) sin _ (3-142)

where N is the distance from the point S to the _ b axis measured along the normal vector

to the ellipsoid at point S. Substituting Equation (3-140) into Equation (3-141) yields

N= Re Re= (3-143)
_/1 - e2 sin 2 _ _/1 - (2f - f2) sin z g}
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Figure 3-15. Ellipsoid Geometry

The ellipsoidal radius is

rs = ]x_, + z_

Substituting Equations (3-137) and (3-142) into Equation (3-144) yields

- f)
rs = ,/1 - e z cos 2 qS'

(3-144)

(3-145)

where cp' is the geocentric latitude.

3.3.6.2 Geodetic to Earth-Fixed Transformation

Assuming that point P in Figure 3-15 has the coordinates Xb, Yb, and Zb in the body-axis

system and is located at a distance h from the reference ellipsoid, then, from Equa-

tion (3-139) and Figure 3-15, the Xb and Zb coordinates are

and

xb' = x_, + h cos _p = (N + h) cos ¢p (3-146)

Zb = Z_ + h sin _b = [N(1 - e2) + h] sin_p (3-147)
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Transforming Equations (3-146) and (3-147) to three dimensionsyields

F'IEYb =

Zb

(N + h) cos _ cos 2 "7

(N + h) cos _b sin 2 J[N(1 - e 2) + h] sin

(3-148a)

where 2, the longitude, is defined as

2= tan -1 Y(_-_b) (3-148b)

The partial derivatives of xb, Yb, and zb with respect to h, 2, and _ are

- 0Xb/0h-]

0Yb/0h I
_ Ozb/Oh_l

oxb/o 7
0yb/O,;I, / =
Ozb/O;_/

c°s,c°,21cos $ sin
sin

-(N + h) COS _b sin _1
(N + h) cos $ cos

0

(3-149)

(3-150)

[(9Xb/(9_I= (N+ h- N_e a_cos2___[-sin_cos_] (3-151)0yb/0_J 1 - e 2 sin 2 t_J sin _ sin

and

[ ( e2 sin2 _ )] [cOs$][Ozb/0_b] = h + N(1 - e 2) 1 + 1 - e 2 sin 2
(3-152)

3.3.6.3 Earth-Fixed to Geodetic

In transforming geodetic coordinates (h, _b, A ) to Earth-fixed coordinates (xb, Yb, zb ),

the point of intersection of the height normal vector and the ellipsoid (i.e., point S) is
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given. In transforming from Earth-fixed to geodetic coordinates, this point is not known
a priori, complicating the transformation.

Two solutions are presented.The first solution is iterative and can yield any required
degree of accuracy. The second solution is a truncated binomial expansion that can be
used when accuracy requirements are not so stringent.

The iterative technique is used primarily to determine the geodetic tracking station posi-
tions where high accuracy is required. For this use (and for near-Earth satellites), the
approximation h << N is satisfied, and since the Earth's figure is nearly spherical,
e2 << 1. Therefore, from Equation (3-148), the following approximation can be made:

N sin qb -_ zb (3-153)

Introducing zi, the Zb intercept of the normal vector, it is apparent from Figure 3-15 that

zi = -N e 2 sin tp (3-154)

Combining Equations (3-153)

tained:

and (3-154), the following approximation for zi is ob-

Z i = - e 2 Zb (3-155)

Using Equation (3-155) as an initial estimate for zi, the following sequence of equations

can be solved iteratively to yield a solution for h and tp"

Zi b = Zb _ Zi (3-156)

N + h = ]x 2 + y2 + zi2b (3-157)

zib (3-158)
sin _ - N + h

N = Re (3-159)
_/1 - e2 sin 2

zi = -N e2 sin _b (3-160)
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Upon convergence of zi, the altitude, h, and latitude, _, are obtained from Equa-
tions (3-157) and (3-158). The longitude 2 is

_" = tan-1 Y(x-bb) (0 < _. < 2_t) (3-161)

A second, computationally simpler procedure for computing the values of _ and h to a

specified point, P, is useful when accuracy requirements are less stringent. The latitude,

_, is solved for from Equation (3-139) as follows:

ZS ---- ZS

tan _ : (1 - e 2) xs, (1 - e 2) _/x 2 + y2 (3-162)

where xb, Yb, and zb of point P are used to approximate the subvehicle point on the

ellipsoid (Xs, Ys, zs), required in Equation (3-162). This approximation yields the geo-

detic latitude to the normal vector of an expanded ellipse through point P. For h << N

and e 2 << 1, it is a good approximation for the geodetic latitude.

Applying the Binomial Theorem to Equation (3-145) yields

[ ( ) 3f 2 ] (3-163)
3 f2 sin 2 _' + -- sin 4 _b'

r_ = Re 1 - f + _- 2

where terms of f higher than second order are neglected. The geodetic height is nearly

h = rb - r_ (3-164)

Substituting Equation (3-163) into Equation (3-164) yields

3 ) ¢, 3 f2 ¢,h = _/x 2 + y2 + z2 _ Re + Ref + _-Ref2 sin - _-Re sin 4 (3-165)

The geocentric latitude required in Equation (3-165) is approximated by

_'= sin-1 (z-_-b) (3-166)
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The partial derivatives of h, 2, and 0 with respect to Xb, Yb, and Zb are obtained by
differentiating Equations (3-157), (3-161), and (3-158) to yield

0h/0Xb0h/0yb =

0h/0Zb

.e a(1 - e 2) sin 0cos 0- (1 e 2 sin 2 0) 3/2
+

¢) p,Hoxb-
|oO/Oybsin2 0 f
LaO/azb_

(3-167)

O_,/OXb--

o;t/Oyb
02/,gzb_

- (x_ + y_)
(3-168)

and

O0/OXb--
O0/OYb

oO/ozb_

(1 - e 2) Yb Zb (3-169)

_/X_ + yb2 I'(1 -e2) 2 (x 2 + y_) + z2] + y2b)

3.3.7 EARTH-FIXED TO TOPOCENTRIC LOCAL TANGENT (EAST, NORTH, UP)

The topocentric local tangent system, described in Section 3.2.4, is used in processing

ground-based measurement data. The transformation from geocentric Earth-fixed coordi-

nates (xb, YO, Zb ) to local tangent coordinates (Xl,, Ylt, zlt) requires a translation along

the geocentric radius vector to the station and a rotation of the axis through the station's

longitude and latitude angles. The station parameters are defined as follows:

gs = body-fixed coordinates of the station

0s = geodetic latitude of the station (positive north)

O's = geocentric latitude of the station

2s = longitude of the station (positive east)

hs = height of the station above the reference ellipsoid

The magnitude of the normal vector to the reference spheroid's surface at the station is

given by Equation (3-143) to be

Re (3-170)
Ns = _/1 - (2f- f2) sin 2 0s
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A A
The components of the geocentric radius vector to the station along the xb, Yb, and

A
zb axes are given by Equation (3-148) to be

ixsl• costscostalYs = (Ns + hs) cos t#s sin

z_ [Ns(1 - e2) + hs] sin s

(3-171)

To bring the _b_ 9b, and _ ^ A ^b axes parallel to the Xlt , Ylt, and zlt axes, a rotation is
^

made about the z b axis by the angle (zt/2 + 2s) and about the new x b axis by the angle

(zt/2 - _bs). The resulting transformation matrix Mlt can be written as

I_ -sin2_ cos 2s 0 -7Mlt = sin Ss cos 2_ -sin $_ sin ;ts cos ¢s_ (3-172)cos $s cos 2_ cos tps sin 2s sin _Ps

The local tangent coordinates of a point in space, xb, Yb, and zb, can be written as

fit = Mlt(rb - rs) (3-173)

This translates the system from the Earth's center to the station and rotates it to the local

tangent system.

The Earth-fixed velocity in the local tangent system is given by

fit = Mlt rb (3-174)

since l(/Ilt = 0 and /'s = 0.

The partial derivatives of the local tangent components with respect to the Earth-fixed

components are the respective elements of the Mlt matrix given by

0fit Ofit

orb Orb
= Mlt (3-175)

3.3.8 KEPLERIAN-CARTESIAN TRANSFORMATIONS (REFERENCES 9 AND 10)

The coordinate transformations between the Keplerian and Cartesian systems are de-

scribed in the following subsections•
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3.3.8.1 Keplerian Elements to Body-Centered True of Date Coordinates

Based on the orbit geometry illustrated in Figure 3-5, the following definitions are made.

The origin is the center of the reference body, the _ axis points to the vernal equinox,

and the _. axis lies along the reference body's rotation axis. The satellite orbital plane

intersects the equator at the nodes. The angle Q is the right ascension of the ascending

node. The axis _op is normal to the orbital plane defining the orbit's inclination. The

angle co is the argument of perifocus. In Figure 3-6, the eccentricity, e, and the semi-

major axis, a, specify the orbit's shape and size. The final element necessary to predict a

body's position and velocity is the mean anomaly, M. However, the eccentric anomaly, E,

or true anomaly, f, can be used instead of M to define the satellite's position in its orbit.

The transformation from the orbital elements (a, e, i, Q, o), M) to the orbital rectangular

coordinates (xp, yp, zp, _p, )p, _p) is considered first. The Xp axis is directed toward

perifocus, the yp axis is in the plane of motion advanced :_/2 from the xp axis in the

direction of motion, and the zp axis is normal to the orbit plane and completes a right-

handed system. The transformations for elliptic, hyperbolic, and parabolic orbits are

given below.

Ellipse: 0 _< e < 1

ix.lEsC°S -e1yp = a in Efi -- e2

zp 0

(3-176)

_'P = (1 - e cos E) cos Efi-- e 2 (3-177)

_p 0

where

E = eccentric anomaly

# = gravitational parameter of the reference body
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The eccentric anomaly, E, is computed by Kepler's equation

M = E - e sin E (3-178)

where M is the mean anomaly defined in Section 3.2.6. This equation is solved by the

following iteration scheme:

f(F__) = En - e sin F__ - M (3-179)

Dn = 1 - e cos [En - 0.5 f(F__)] (3-180)

En+l = En f(En) (n = 0, 1, 2, 3, ...) (3-181)
D_

where

Eo = M + e sin M (3-182)

Hyperbola: e > 1

Ixrl I_ c°shF- e FI
yp = a f_-_ 1 sinh

zp 0

(3-183)

I_ sinh F FI

fZ-fi-/a (3-184)
= (e cosh F - 1) _ _ _- cosh

0

where F is the hyperbolic anomaly computed using Kepler's equation for a hyperbola

M = e sin F - F (3-185)
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The hyperbolic Kepler equation can be solvedby a Newton-Raphsoniteration of the fol-
lowing form:

Fn,_ = Fn - e sinh Fn- Fn - M (n = 0, 1, 2, 3, ...) (3-186)
e cosh Fn - 1

where Fo -- M/2. (Note: The preceding equation is singular for orbits with e _ 1.)

parabola: e = 1

(3-187)

E'I1i_ = (q + DV2)
_p

(3-188)

where q is the pericentric distance and D is computed from Barker's equation, that is

D 3 + 6q D = 6M (3-189)

The orbital rectangular coordinates are transformed to inertial Cartesian position and

velocity coordinates as follows"

=P "PlYp

_ Zp

(3-190)

= p _p (3-191)

tip
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The elements, PU, of the rotation matrix, P, are

Pn = cos f_ cos to- sin f_ cos i sin to (3-192a)

P12 = -COS Q sin to - sin f_ cos i cos to (3-192b)

P_s = sin f_ sini (3-192c)

P21 = sin Q cos to + cos Q cos i sin to (3-192d)

P22 = -sin f_ sin to + cos fl cos i cos to (3-192e)

P23 = -cos Q sin i (3-192 0

P31 = sin i sin to (3-192g)

Pn = sin i cos to (3-192h)

P33 = cos i (3-192i)

3.3.8.2 Keplerian to Cartesian Partial Derivatives

The functional relationships expressed in Equations (3-190) and (3-191) are

t- = P(f2, to, i)t-p(a, e, M) (3-193)

and

L.
r = P(Q, to, i) rp(a, e, M) (3-194)
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The partial derivatives of t- with respect to the orbital elementscanbe written for _ -- a,
e, and M as

O____(_= p 0t-p (3-195)

and

Or = p --O_v (3-196)

and can be written for _ -- f2, 09, and i as

(3-197)

and

(3-198)

The partial derivatives of _p and rp for elliptical orbits are

o%
0(a, e, M)

Xp

a

= yp

a

0

y2_ e2))- a r(1

r(1 - e z)j

0

a yp )r _ e 2

( af_ - e2 r(Xp+a e))

(3-199)
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and

O(a, e, M) Yp

2a e2

1 e 2

- n(a) 3 yp

0 0 0

(3-200)

where the mean motion, n, is

n _-

a
(3-201)

The partial derivatives of P with respect to _, co,

OP F- P21 - P22 ilOQ - LPll P120

and i are

(3-202)

Oco - P22 - P21

P32 - P31

(3-203)

n

Oi

sin _ sin i sin co

cos f2 sin i sin co

cos i sin co

sin _ sin i cos co

-cos Q sin i cos co

cos i cos co

(3-204)



3.3.8.3 Body-Centered True of Date Coordinates to Keplerian Elements

Given the position, f, and velocity, r, at time t, the standard Keplerian elements (a, e, i,

Q, to, M) are calculated as follows. Let the magnitude of the position, velocity, and

angular momentum vectors be denoted by

r = I v l (3-205)

w = Irl (3-206)

h = I_1 (3-207)

where

h = t- x r (3-208)

The equations for the orbital elements and related parameters are then the following:

$emimaior Axis

a = /z r (3-209)
(2/_ - r V z)

Semilotu_ Rectcm

1
p = --[(r V) 2 - (t- • }-)2] (3-210)

/z

Eccentricity

e _/7 P (3-211)
a
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Inclination

sin i = [(t- x _ x _zl = / h2x + h2 (3-212)

It-x r[ h

A

Uzcos i = (F x _ = __hz (3-213)

It x h

A A A

where Ux, Uy, and u z are unit vectors in the body-centered true of date Cartesian

coordinate system, and hx, hy, and hz are components of the angular momentum vector,
h.

The following parameters are defined for the two cases of elliptic motion and hyperbolic
motion:

Elliptic Motion (a > 0) Hyperbolic Motion (a _< 0)

Eccentric Anomaly: Hyperbolic Anomaly:

1 (r" r'_ 1 (t-" r_ (3-214)
sin E -- e_-f_J sinh F = e_._j

Mean Anomaly: Mean Anomaly:

•.._ "_

M = E t- r M = t- r F (3-216)

-_..f
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Period:

a/a° Period not applicable (3-217)
P = 2_t for hyperbolic motionV.

Energy (per unit mass): Energy (per unit mass):

Energy = /_ Energy = _ (3-218)
2a 2a

The following parameters have the same definitions for both elliptic and hyperbolic mo-

tion:

Longitude of the Ascending Node:

k

sin Q - hx (3-219)
h sin i

cos Q = -hy (3-220)
h sin i

True Anomaly:

sin f = _ (g're _) (3-221)

P r
cos f - (3-222)

re
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Argument of Perifocus:

z
sin (w + f) =

r sin i
(3-223)

y hx - x hy

cos (co + f) = hr sin i
(3-224)

Perifocal and Apofocal Radius:

rp = a (1 - e) (3-225)

r_ = a (1 + e) (3-226)

Perifocal and Apofocal Height:

hp = rp - rs (3-227)

h_ = r. - r_ (3-228)

where rs is the equatorial radius of the Earth.

The partial derivatives of the Keplerian coordinates with respect to the Cartesian coordi-

nates are given by the inverse of the Keplerian-to-Cartesian partial derivatives in Equa-

tions (3-195) through (3-198), i.e.,

-Oa/Ox Oaldy • • • dalOz

Oe/Ox Oe/Oy • • • Oe/O

Oi/Ox dilOy • • OilOz

OM/Ox OM/Oy OM/O z

-Ox/Oa Ox/Oe Ox/Oi Ox/OM-

Oy/Oa Oy/de dy/Oi . ' dy/OM

2 i/Oa Oz/Oe O_,/Oi • • • O_/OM

-1

(3-229)
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3.3.9 EQUINOCTIAL-CARTESIAN TRANSFORMATIONS

(REFERENCES 11 AND 12)

The following subsections present the transformations between the equinoctial elements,

described in Section 3.2.6, and the inertial Cartesian system. The equinoctial elements

are used only to describe closed orbits.

3.3.9.1 Equinoctial Elements to Cartesian Coordinates

Conversion from equinoctial elements, a, h, k, p, q, 2, to inertial Cartesian coordinates,

t- and r, is performed in the following manner. First, the generalized Kepler equation for

equinoctial elements,

2 = F + h cos F - k sin F (3-230)

is iteratively solved for the eccentric longitude F, which is the sum of the eccentric anom-

aly, the argument of perigee, and the right ascension of the ascending node.

Next, the position and velocity coordinates in the equinoctial coordinate system

(Xep, Yep, Zep) are obtained as follows for both the direct and retrograde cases:

X, = a[(1 - h 2 fl) COS F + h k fl sin F - k] (3-231)

YI = a[(1 - k 2 fl)sin F + h k fl cos F - h] (3-232)

)(1 - na 2[(hkflcos F- (1 - h 2fl) sin F] (3-233)
r

(lzI n a 2- [(1 - k2fl) cos F - h kfl sin F] (3-234)
r

where

1
fl = (3-235)

1 + ]1 - h 2 - k 2
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The transformation from the equinoctial systemto the inertial Cartesian system is given

by

^ ^ (3-236)t- = X1 f + Y1 g

- f +Y1 gr = )(1 ^ ^ (3-237)

A A A .
where f and g are unit vectors directed along the Xep^ and Yep axes, respectively (see

Figure 3-5). These vectors are computed in inertial Cartesian coordinates as follows:

[ J1 1 - p2 + q2 2pqj 2p

[f' g' _'] = 1 + pZ + q2 2p q (1 + p2 _ q2) j -2q (3-238)
-2pj 2q (1 - p2 _ q2)

where

j = 1 for direct orbits(0 < i < 180")

j -- -1 for retrograde orbits (0 < i < 180")

In GTDS, the operational choice of direct elements was made for 0 < i < 90 degrees

and of retrograde elements for 90 degrees < i _< 180 degrees.

3.3.9.2 Cartesian Coordinates to Equinoctial Elements

The equinoctial orbit elements, a, h, k, p, q, 2, are calculated from the Cartesian posi-

tion, _, and velocity, r. The semimajor axis is computed as follows:

, (3-239)

The eccentricity vector is given by

(rxhxr
r /_

(3-240)
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The unit vector _vis defined as follows (seeSection 3.2.5)"

A
W

_ x r

k-x
(3-241)

A

The unit vectors f and _ can then be computed as follows:

fx = 1
l+wJ_

(3-242)

fy

W x Wy
(3-243)

fz _ _ wJx (3-244)

where j is as defined following Equation (3-238), and

A A A
g = w x f (3-245)

The equinoctial elements h, k, p, and q are given by

A

h=_-" g (3-246)

A
k=_-" f (3-247)

Wx

p-
l+wJz

(3-248)

Wy
q=

l+wJz
(3-249)
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The mean longitude is computed using the generalized Kepler equation

;t = F + h cos F - k sin F (3-250)

where

sin F']
F = tan -1 _1 (3-251)

with

(1 - k2fl) Xl - hk/_Y1

cos F = k + a_/1 - h 2 - k 2 (3-252)

(1 - h2fl) Y1 - hkflX1

sin F = h + a,/1 - h 2 - k 2 (3-253)

The parameter fl in Equations (3-252) and (3-253) is given by Equation (3-235).

Finally, the position coordinates Xep and yep, relative to the equinoctial coordinate system,

are given by

^ (3-254)X1 = t-" f

^ (3-255)YI = r g

3.3.10 HERRICK-CARTESIAN TRANSFORMATIONS (REFERENCES 13 AND 14)

The coordinate transformations between the Herrick and Cartesian systems are described

in the following subsections.

3.3.10.1 Herrick Elements to Cartesian Coordinates

The following method is used for conversion from Herrick elements, _-, i n, and 2 to
A A ' '

inertial Cartesian coordinates. The unit vectors f, g, and _v along the equinoctial
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orbit plane coordinate directions (see Section 3.2.5) must first be determined. The unit
vector _v is given by

^ .i (3-256)W -

Itl

^
The unit vectors f and _ are determined from Equations (3-242) through (3-245) as

functions of _v.

The Kepler equation for Herrick elements is solved by iteration for the eccentric longi-

tude F,

2 --- F + h cos F - k sin F (3-257)

where h and k are calculated from Equations (3-246) and (3-247) as functions of the
A A

known vectors _-, f, and g.

The coordinates of position and velocity in the direct equinoctial system,

X1, Ya, )(1, _'1, are given by Equations (3-231) through (3-234), with

(l,  1/3 (3-258)
a = _--fj

Finally, the position and velocity in the inertial Cartesian system are computed via the

following transformations:

^ ^ (3-259)
_ = Xl f + Y1 g

- f +'1 gr = X1 ^ ^ (3-260)

3.3.10.2 Cartesian Coordinates to Herrick Elements

Given the Cartesian position and velocity vectors, f and r, the Herrick variables

and 2 are computed as described below.

The eccentricity, e, is given by

F x
r /_

(3-261)
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The angular momentum vector is

L.

i = r x r (3-262)

and the Kepler mean motion is

n = _ (3-263)

where the semimajor axis, a, is given by

a = [_ [r]2]-lk_ (3-264)

The mean longitude, 2, is computed from the generalized Kepler equation given in Equa-

tion (3-250) to be

2 = F + h cos F - k sin F (3-265)

where the variables h and k are determined from Equations (3-246) and (3-247), with
A A

vectors w, f, and _ calculated from Equations (3-256) and Equations (3-242) through

(3-245). The eccentric longitude, F, is determined from Equations (3-251) through

(3-253), fl is determined from Equation (3-235), and X1 and Ya are determined from

Equations (3-254) and (3-255).

3.3.11 KEPLERIAN TO EQUINOCTIAL AND HERRICK TRANSFORMATIONS

The coordinate transformations between the Keplerian and the equinoctial or Herrick

systems are described in the following subsections.

v"
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3.3.11.1 Keplerian to Equinoctial Elements

The conversion from Keplerian elements (a, e, i, _, _o, M) to equinoctial elements is

performed via the following equations:

Direct Set (0 ° <_ i <180 ° )

a = a

Retrograde Set (0 ° < i < 180 ° )

a = a (3-266)

h = e sin (w + Q) h, = e sin (to - f_) (3-267)

k = ecos(co+ kr = e cos (w - if2) (3-268)

p = tan (i/2) sin g2 pr = cot (i/2) sin ff_ (3-269)

q = tan (i/2) cos Q q, = cot (i/2) cos f_ (3-270)

2=M+w+Q 2_=M+w-Q (3-271)

3.3.11.2 Keplerian to Herrick Elements

Conversion from Keplerian to Herrick elements is performed using the following equa-

tions:

ex = e cos if2 cos w - e sin g2 sin to sin i (3-272)

ey = e sin f2 cos to + e cos Q sin to cos i (3-273)

e,. = e sin to sin i (3-274)

Itl -- _/a(1 - e z)
(3-275)

/x = It[ sin Q sin i (3-276)
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ty -- -Igl cos _ sin i (3-277)

tz = Igl cos i (3-278)

n = v/_-/a 3 (3-279)

a=M+w+Q (3-280)

where j is as defined following Equation (3-238). The Herrick elements are not currently

used in GTDS.

3.3.12 VEHICLE-FIXED TO BODY-CENTERED TRUE OF DATE

TRANSFORMATIONS

The propulsive and aerodynamic accelerations are modeled in the vehicle-fixed coordinate

system described in Section 3.2.7. These vehicle-oriented accelerations must be trans-

formed to the inertial Cartesian system to be consistent with other terms in the dynamical

equations of motion.

The following three angular transformations are required to orient the vehicle-fixed coor-

dinates with respect to the inertial Cartesian axes:

Rz(av)

Ry(- &,)

Rx(_PO

rotation about the inertial ^
= z axis, through the right ascension,

av, of the vehicle's (longitudinal) x,, axis.

= negative rotation about the new _ axis, through the declination,
t}v, of the vehicle's (longitudinal) x v axis.

= rotation about the new_ axis (which is aligned with the
^
x v axis), through the roll angle, _v, to the vehicle-fixed axes

where Rx and Rz are given by Equation (3-14), and Ry is

Ry(a) Ico o 0 _ oOq= 1

/sin a 0 cos
aj1._

(3-281)
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If an arbitrary vector is denotedby _v when expressedin vehicle-fixed coordinatesand by
_ when expressedin inertial Cartesian coordinates, then the transformation betweenco-
ordinates can be written as

-- [Rx( v) Ry(-60 Rz(a0] T

--O(,
(3-282)

where the elements of Q are

qll = COS _v COS av (3-283a)

q12 = -sinCv sin 6_ cos av- cos ¢_ sin a,, (3-283b)

q13 = -cos¢_ sin 6v cos av + sin 9_ sin av (3-283c)

q21 = COS 6v sin av

q22 = -sin_b, sin 6_ sin a_ + cos ¢v cos a,

(3-283d)

(3-283e)

q23 = -cos _bv sin _, sin a, - sin ¢v cos av (3-2830

q31 = sin 6v (3-283g)

q32 = sin _ cos 6_ (3-283h)

q33 = COS Cv COS 6v (3-283i)

3.3.13 GEOGRAPHIC COORDINATES TO SPHERICAL COORDINATES

The right ascension, a, in spherical coordinates is obtained as follows:

a = ag + hE (3-284)
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where

2E = geographic east longitude, measured positive west (-2zt < _, ___ 0)

ag = Greenwich hour angle

The declination, 6, in spherical coordinates is computed as follows:

6 = _0'+ arcsin[-_ sin (q_-_p')] (3-285)

where

q_' = arctan [(1 - f2) tan tp] (3-286)

e 2 = 2f - f2 (3-287)

1% ,/(1 - e2)

rs -- ,/1 -e 2 cos 2 q_'
(3-288)

Hs = _/r 2 - r_ sin 2 (q_ - $') - rs cos (tp - $') (3-289)

and

f = inverse flattening coefficient of the central body [defined in Equa-

tion (3-135)]

e = eccentricity of the central body

_b = geodetic latitude

q_' = geocentric latitude

Re = equatorial radius of the central body

rs = distance of the subsatellite point from the center of the Earth

H_ -- height above the mean spheroid, normal to the ellipsoidal surface

r = magnitude of the position vector
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The bank angle, v, in spherical coordinates, is then determined from

(3-290)V= -F+--
2

where F, the flight path angle, is the angle between g and _, the spacecraft inertial

position and velocity vectors, where -zr/2 _< F _< _r/2.

3.3.14 INERTIAL TO ROTATING LIBRATION COORDINATES

The L1 (libration) point lies on the vector between the Sun and the Earth-Moon barycen-

ter. If RB and V-B are the inertial position and velocity vectors of the barycenter with

respect to the Sun, then the _', _,, _' axes of the rotating libration point coordinate

system are aligned along the vectors R---B,(RB X VB) X RB, and RB X VB, respec-

tively.

The transformation from either ecliptic or equatorial inertial coordinates, R, V, to this

rotating Libration Coordinate System is computed as follows:

i A i A t
_' x x' Y _'

^ ^ A A (3-292)Q= ' x ' y Y'

A A Ar
_' x _' y z

B

_- _,,

A
2' x

A
X

A
X

^ ;,,_' y

^' y y'

^ Az,_' y

(3-293)

3-75



The libration coordinate axes are defined as

A RB
X r

= I BI (3-294)

m m

_, = RB x VB (3-295)
x

_' = _' x 2' (3-296)

The quantities 2, _, and _ are the inertial axes. The inertial position and velocity of

the Earth/Moon barycenter with respect to the Sun are given by

ME RE + _ M

R--B = MM (3-297a)
ME

+1
MM

ME V'--E + V--M

V--B = MM (3-297b)
ME

+1
MM

where

RE

VE

RM

VM

ME

MM

= inertial position vector of the Earth with respect to the Sun

= inertial velocity vector of the Earth with respect to the Sun

= inertial position vector of the Moon with respect to the Sun

= inertial velocity vector of the Moon with respect to the Sun

= mass of the Earth

= mass of the Moon
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The rate of changeof the libration coordinate axes is given by

_, V--'B R'B" VB (3-298)
-t .l

k R'--B x A--'B [(RB X VB) (RB X AB)] RB X VB (3-299)
Z F _ m

I_B x VBI IRBI3

,_ [(KBx k-B)x R_ + R% x _B]
yl =

I(K_x %) x K_I

where

D

RB (3-301)
AB = - GMstJr_ I_BI3

3.4 TIME SYSTEMS

The GTDS orbit determination program uses the atomic time system, A.1, in the integra-

tion of the equations of motion. However, the system must interface with external input/

output data sets that are referenced to other time systems, such as ephemeris time (ET)

for the solar/lunar/planetary (SLP) ephemerides, UT1 for computing the Greenwich

sidereal time, and coordinated universal time (UTC) for input/output epochs and tracking

data. A brief description of the relevant time systems and their interrelationships follows

(References 1, 15, and 16).

3.4.1 EPHEMERIS TIME, ET

Ephemeris time (ET) is the uniform measure of time, which is the independent variable

of the equations of motion, and the argument for the ephemerides of the planets, the

Moon, and the spacecraft. The units of ET is the ephemeris second, which is defined as

the fraction 1/31,556,925.9747 of the tropical year for 12 h ET of January 0 d, 1900.

Ephemeris time is determined from the instant near the beginning of the calendar
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year 1900whenthe geometricmean longitude of the Sun referred to the mean equinox of

date was 279 h 41'48'.'04, at which instant the measure of ephemeris time was 1900

January 0 a 12 h.

3.4.2 ATOMIC TIME, A.1

Atomic time (A.1) is one of several types of atomic time. It is obtained from oscillations

of the United States Cesium Frequency Standard located at Boulder, Colorado. In 1958,

the United States Naval Observatory established the A.1 system based on an assumed

frequency of 9,192,631,770 oscillations of the isotope 133 of the cesium atom per A.1

second. The reference epoch of A. 1 was established such that on January 1, 1958, 0h0m0 s

UT2 the value of A.1 was 0h0m0s, January 1, 1958.

3.4.3 UNIVERSAL TIME, UT

Universal time (UT) is the measure of time that is the theoretical basis for all civil

timekeeping. LIT is related to the rotation of the Earth on its axis. Compared with

ephemeris time, which is uniform time, LIT does not take into account the irregularities of
the Earth's rate of rotation.

The quantity LIT is defined as 12 hours plus the Greenwich hour angle (GHA) of a point

(representing the fictitious mean Sun) on the mean equator of date whose right ascension

measured from the mean equinox of date is

Ru = 18h38m45s. 836 + 8,640, 184s. 542 Tu + 0s.0929 T 2 (3-302)

where Tu is defined following Equation (3-38).

The Greenwich hour angle of this point, denoted by Su in Figure 3-16, is

GHA of Su -- acM - Ru (3-303)

where acMiS the Greenwich mean sidereal time; hence,

UT = 12 h + aGM - eu (3-304)

Adding 12 hours to both sides of the above equation yields

UT + 12 h = aGM - Ru (3-305)

3-78



NORTH CELESTIAL POLE

PRIMEOh _ MERIDIANRIGHT
ASCENSION _ / I _,f _(_ _n,'-,-,,_WICH"" ""'_"'

CIRCL

/ _ MEAN EQUATOR

_ OF DATE

GHA _'
POINTING TO _" R,, _ Mo

MEAN EQUINOX " \ OF Su

OF DATE

FICTITIOUS MEAN SUN

Figure 3-16. Greenwich Hour Angle

and solving for aGM

aGM = 12 h + UT + Ru (3-306)

In practice, the point whose right ascension is Ru cannot be observed. Consequently, the

practical determinations of UT are obtained, through the intermediary of sidereal time,

from observations of the diurnal motion of the stars. Sidereal time is a measure of the

rotation of the Earth relative to the stars and is defined as the hour angle of the vernal

equinox. Therefore, the meridian transit of a star occurs at a sidereal time equal to its

right ascension.

Universal time varies from uniform time due to variations of the meridian, arising princi-

pally from polar motion, and variations in the rotational rate of the Earth, consisting of

secular, irregular, periodic seasonal, and periodic tidal terms. The tidal variations are

very small; the secular variation is significant only over large time intervals; and the

irregular variations, while they may be relatively large, are highly erratic. The periodic

seasonal variation appears stable enough to be predictable.

There are three measures of UT in common usage: (1) UT0, which is determined from

observations of the local mean sidereal time; (2) UT1, obtained by correcting UT0 for

polar motion; and (3) UT2, which results from the removal of the seasonal inequality

from UT1.
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3.4.4 UNCORRECTED UNIVERSAL TIME, UT0

Uncorrected universal time (UT0) is obtained by assuming an adopted conventional value

hA of the longitude of each observing station (see Section 3.3.2.2). The local mean

sidereal time at transit is generally determined through observation of meridian transits of

stars, omitting from the apparent right ascension the nutation terms that are independent

of the coordinates of the star (the equation of the equinoxes). Subtracting the east longi-

tude of the observing station gives a_M, the Greenwich mean sidereal time or Greenwich

hour angle of the mean equinox of date. UT0 is then obtained from Equation (3-304) by

adding 12 hours and subtracting P_ from this value. Since the motion of the pole causes

variations in the meridian, UT0 is dependent on the location of the observing station.

3.4.5 UNIVERSAL TIME, UT1

UT1 universal time is obtained from UT0 by applying an appropriate correction in longi-

tude due to the motion of the pole. UT1 is the form of universal time used in GTDS. This

measure of time reflects the actual orientation of the Earth with respect to the vernal

equinox at that instant. UT1 will be the same for all observatories. In contrast, UT0 time,

as determined by different observatories using their adopted longitude in calculations,

results in a different value of UT0 for each observatory.

Then

UT1 = UT0 - A2 (3-307)

where A2 is given in Equation (3-50).

UT1 time is used by GTDS to compute the acM as given in Equation (3-38).

3.4.6 UNIVERSAL TIME, UT2

If the extrapolated value of UT1 time is corrected for periodic seasonal variations, SV, in

the Earth's speed of rotation, the resulting time is UT2. UT2 does not represent the actual

orientation of the Earth with respect to the vernal equinox. UT1 should always be used

when the actual orientation of the Earth is required. UT2 is often referred to as

Greenwich Mean Time (GMT) or ZULU time. The equation for UT2 is

UT2 = UT1 + SV (3-308)
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where

SV = 0s.022 sin 2nt - 0_.017 cos 2nt - 0s.007 sin 4m + 0_.006 4m (3-309)

or

SV = 0s.022 sin 2ztt - 0s.012 cos 2zrt - 0_.006 sin 4m + 0_.007 4a-t (3-310)

Equation (3-309) was used prior to 1962 and Equation (3-210) has been in use since

1962. The quantity t equals the fraction of the tropical year elapsed from the beginning of

the Besselian year for which the calculation is made. (One tropical year equals

365.2422 days.) Since seasonal variations can be known precisely only after their occur-

rence, UT2 itself is rarely used. The Bureau International de l'Heure also issues correc-

tions for A2 and SV.

3.4.7 COORDINATED UNIVERSAL TIME, UTC

Coordinated universal time (UTC) is the standard time scale to which tracking stations

are synchronized. UTC time is derived from atomic time, A.1, in a manner that makes it

almost synchronous with UT2. Up to January 1, 1972, the UTC time scale operated at a

frequency offset from the atomic time scale. The value of the offset was periodically

changed by international agreement so that the UTC scale would correspond more closely

to UT2. On January 1, 1972, a new improved UTC system, adopted by the International

Radio Consultative Committee (CCIR), was internationally implemented by the timekeep-

ing laboratories and time-broadcast stations.

The new UTC system eliminates the frequency offset from atomic time, thus making the

UTC second constant and equal in duration to the A.1 second (References 17 and 18).

The new UTC time scale is now kept in synchronism with the rotation of the Earth to

within + 0.7 second by step-time adjustments of exactly 1 second, when needed.

3.4.8 STATION TIME, ST

This measure of time is obtained at each station by counting cycles of a rubidium atomic

frequency standard. The difference between ST and UTC is tabulated by each station.

The observables are recorded in ST and then transformed to UTC.

3.5 TRANSFORMATIONS BETWEEN TIME SYSTEMS

Desired transformations between the time systems ET, A.1, UTC, and UT1 are carried

out in GTDS by evaluating either a standard formula or an appropriate time polynomial.
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3.5.1 TRANSFORMATIONS BY STANDARD FORMULA

For most purposes, the difference between A. 1 and ET can be considered a constant. The

suspected discrepancy is roughly two parts in 109 . The actual transformation between A. 1

and ET time is given by

(ET - A.1) = AT1958 -
(JD - 2,436,204.5)(86,400)

9, 192,631,770

+
2e_ a) 1/2 sin E

C2

X Afcesium

(3-311)

where

AT1958 =

JD

2,436,204.5 =

Afeesium =

_U

a

e

c

E

ET - UT2 on 1 January 1958, 0h0m0 s UT2, minus the periodic

term in Equation (3-311) evaluated at this same epoch

Julian date

Julian date on 1 January 1958, 0h0m0 s

correction to fcesiurn = 9,192,631,770 cycles of cesium per

ephemeris second

gravitational constant of the Sun =
1.32715445 x 1011 kilometers3/second 2

semimajor axis of the heliocentric orbit of the Earth-Moon

barycenter = 149,599,000 kilometers

eccentricity of the heliocentric orbit of the Earth-Moon bary-
center = 0.01672

speed of light at an infinite distance from the Sun =
299,792.5 kilometers/second

eccentric anomaly at the heliocentric orbit of the Earth-Moon

barycenter

The first term of Equation (3-311) arises because A.1 was set equal to UT2 at the begin-

ning of 1958. The second term accounts for the difference between the lengths of ET and

A.1 seconds (if Afcestum is nonzero). The periodic term arises from general relativity. It

accounts for the fact that A.1, UTC, and ST times are measures of the proper time

observed on Earth and that ET is a measure of the coordinate time in the heliocentric

(strictly barycentric) space-time frame of reference. The contribution of the last two terms

in Equation (3-311) is negligible for the range of applications currently contemplated for
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GTDS. Hence, the transformation betweenET and A. 1 is accomplishedusing the approxi-
mate formula

ET - A.1 -- 32_.15 (3-312)

3.5.2 TRANSFORMATIONS BY TIME POLYNOMIALS

The remaining transformations between the time systems A.1, UTC, and UT1 are accom-

plished using the time difference data, A.1-UTC and UT1-UTC, supplied in Earth

Orientation Bulletins by the United States Naval Observatory. These data have been con-

veniently reduced by quadratic polynomial fits to improve the efficiency of the transfor-

mation procedure. The time difference polynomials derived for use by GTDS have the

form

(A.1 - WTC)i -- all + ai2 T + ai3 T 2 (3-313)

(A.1 - UT1)i = ai4 + ai5 T + ai6 T 2 (3-314)

where

A.1-UTC = difference between A.1 and UTC time (in seconds)

A.1-UT1 = difference between A.1 and UT1 time (in seconds)

The quantity T is the number of days from the beginning of the timespan covered by the

polynomial, T = 1, 2, .... For the given modified Julian date, MJD,

T = MJD - MJDi + 1 (3-315)

In this expression, MJDi is the tabular modified Julian date that bounds the interval from

below, i.e.,

MJDi < MJD < MJDi+I (3-316)
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The coefficients a U and the associated timespans are determined by least-squares fitting

second-order polynomials to published time difference data. The timespans are deter-

mined by constraining the maximum deviation (between the data and polynomial) to be

less than 0.0005 second for A.I-UTC and less than 0.005 second for A.I-UTI. Provision

is made for inserting future A.I-UTC offsets (leap seconds) as predicted by the USNO.

Extrapolation of A. I-UT1 time is achieved by performing a linear least-squares fit on the

data for the last 6 months to obtain ais, the A.I-UTI rate. The second-order coefficient,

ai6, is set equal to zero. This extrapolation is used for I year from the date of the last

available observation; after this, both ai5 and ai6 are set equal to zero.

3.6 POLYNOMIAL REPRESENTATION OF EPHEMERIS DATA

In GTDS, planetary and lunar positions and velocities, as well as the Earth's nutation and

precession data, are determined by evaluating multiple-day-arc Chebyshev polynomials

whose coefficients are derived from ephemeris data contained on tapes supplied by the

Jet Propulsion Laboratory (JPL) (References 6 and 19). The data contained on the JPL

tapes are Chebyshev coefficients for polynomial fits to the positions and velocities of the

planets Mercury, Venus, Earth-Moon barycenter, Mars, Jupiter, Saturn, Uranus, Neptune,

Pluto, and the Earth's Moon, as well as the nutation rates in longitude and obliquity.

These data are generated by weighted least-squares estimation of the appropriate orbital

models using source positions obtained on the basis of current planetary theories. Posi-

tions and velocities on the tapes are referenced to the rectangular equatorial system of the

mean equator and equinox of B1950.0 or mean equator and equinox of J2000.0, with

planetary data being heliocentric and lunar data being geocentric.

The software used to retrieve data from a JPL ephemeris tape provides interpolated val-

ues of position and velocity vectors of any requested set of bodies relative to the Earth.

The data obtained are ephemerides of the Sun, Moon, and planets (SLP) in a mean

reference frame on a dynamical (ephemeris) time base. The time base is related to the

A.1 time base, as discussed in Section 3.5. Optionally, they can be coverted to data in a

true of date reference frame, as discussed in Section 3.3.1. In addition, the precession

and nutation data, for the same timespans as the SLP data, are generated, as discussed in

Section 3.3.1.

The Chebyshev polynomial coefficients are obtained from the JPL ephemeris data in the

following manner. If the function values provided by the JPL software at requested

times ti (i = 1, 2, ..., m + 1) for a single component of position, velocity, or nutation is
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designated Yi, then an mth-order interpolating function in the interval [tl, tin, l] can be

obtained as a linear combination of basic functions Fj(t) as follows:

m+l

Ym(t) = _ cj Fj(t) (3-317)

j--1

by requiring that the differences between the data and the function be a minimum, where

the following is the function to minimize:

0 = i - cj Fj(ti

i=1 j=l

(3-318)

"v

The choice of the functions Fj(t) (j -- 1, 2, ..., m + 1) in Equation (3-317) has important

ramifications both on the obtainable accuracy of Ym(t) for t _ ti and the ease of deter-

mining the values of q.

The interval [tm, tm,1] is transformed to [1, -1] by the linear transformation of variables

x = 2t - (tm+l + h) (3-319)
tm+l - tl

The functions F are then chosen as the orthogonal Chebyshev polynomials of degree

j - 1, i.e.,

Tj(x) = cos [0 - 1) cos -1 x] (3-320)

where

Tl(x) = 1 (3-321a)

T2(x) = x (3-321b)
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T3(x) = 2x2- I (3-321c)

= 2x Tj(x) - Tj_ (x) (3-321d)

Under these conditions, Equations (3-317) and (3-318) can be reformulated as

rn÷l

Ym(x) = 2 cj Tj(x)

j=l

(3-322)

and

Q = i - cj Tj(x i = 0

i=l j:l

(3-323)

All data are fit over the same interval. Data reduction can be achieved by selecting the

least number of coefficients for which

MSx y - q Tj(x)

j=l

< E (3-324)

for x in [1, -1]. This is satisfied if the coefficient of the truncated term, Cm+2, is less than

e, because of the minimum-maximum property of Chebyshev polynomials. For a given

interval [h, tm÷l] , the discrepancy between y and Ym(x) is minimized and the amount of

work required to determine the cj substantially reduced by selecting the base points xi as

the roots of the Chebyshev polynomial of degree m + 1, i.e.,

(2i- 1)
xi = cos (i = 1, 2, ..., m + 1) (3-325)

2(m + 1)
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At thesepoints, the polynomials have the following orthogonality property with respectto
summation as well as integration:

m+l

E
a=l

Tj(xa) Tk(xa)--0 (j _ k) (3-326)

m÷l

E Tj(xa) Ti:(Xa) -

a=l

m+l

2
[j -- k; j, k < (m + 1)1 (3-327)

This property is derived from the corresponding orthogonality property of the cosine func-

tions and makes it possible to determine the cj from

m+l

Cl - Yi Tl(xi) (3-328)
m+l

i=l

m+l

cj - m + 1 Yi Tj(Xi) 0 2, 3, ..., m + 1) (3-329)

i=l

Once the coefficients cj of the linear combination of Tj have been determined, Ym(x) can

be conveniently transformed into the equivalent Chebyshev interpolating polynomial in

[1, -1]

m÷l

Ym(x) = _ bi x i-1 (3-330)

i=l

as shown below.
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Let

alj = (- 1) j÷l C2j-1 [j = 1, 2, ..., (2j - 1) _< m] (3-33!)

ail = 2 i-2 ci (i = 2, 3, ..., m + 1) (3-332)

and

aij = c[t+20-1)l [2ai-l,j - ai,j-1]

(i = 2, 3, ..., [i+20-1)1 --- m+l}

{j = 2, 3, ..., [i+2(j-1)l -< m+l}

(3-333)

Then, the coefficients bi of the interpolating polynomial can be determined from

bi = 2, aij

J

(i = 1, 2, ..., m + 1)

{j = 1, 2, ..., [i+2(j-1)1 _< m+l}

(3-334)

Finally, the polynomial so determined can be used to interpolate in the interval [tl, tm+l]

by means of the transformation of variables defined by Equation (3-319).

The present version of GTDS can handle any of 10 bodies, one of which is the central

body. A solar/lunar/planetary file by Chebyshev approximating the polynomials is gener-

ated covering the entire time interval of interest. The file contains polynomials for each

component of position and velocity and for each element of the matrices that transform

from the selenocentric true of date to the selenographic coordinate system and from the

mean equator and equinox of date to the true of date coordinate system, as required by

the application. The file also contains coefficients for the equation of the equinoxes, AH,

used to correct the mean Greenwich sidereal time as given in Equation (3-38). Three SLP

Ephemeris Files are created: one for mean of B1950.0 data, one for mean of J2000.0

data, and one for true of date data.
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CHAPTER 4--PERTURBATION MODELS AND
VARIATIONAL EQUATIONS

For orbital prediction using the method of special perturbations, the equations of motion

of the satellite are integrated numerically. The perturbing acceleration vector is required

to construct these equations, which are presented in Chapter 5. The sources of these

perturbations are identified and the appropriate perturbation models presented in this

chapter. The total perturbation model and the variational equations are described in Sec-

tion 4.1. The specific perturbations, discussed in Sections 4.2 through 4.8, include the

following:

• Gravitational acceleration due to n point masses, R:-pM (Section 4.2)

• Gravitational acceleration due to the nonsphericity of the gravitational poten-

tial, R-"NS (Section 4.3)

• Acceleration due to the mutual nonspherical gravitational attraction of the

Earth and Moon, R_o (not currently available in GTDS) (Section 4.4)

• Acceleration due to aerodynamic forces, R'--D (Section 4.5)

• Acceleration due to solar radiation pressure, R'--sR (Section 4.6)

• Acceleration due to attitude control system corrections, R=-TAC (not currently

available in GTDS) (Section 4.7)

• Acceleration due to the thrusting of the spacecraft engines, R-:r (Section 4.8)

All or any subset of these effects can be included in the perturbing acceleration vector,

which is used in the construction of the equations of motion using either the Cowell or

Variation of Parameters formulations.

The partial derivatives of the current state vector with respect to the initial state vector are

required in the differential correction process. These partial derivatives, which constitute

the state transition matrix, can be obtained by numerically integrating a system of varia-

tional equations in conjunction with the Cowell orbit generator. The construction of these

variational equations is discussed in detail for each of the perturbing accelerations. Accel-

erations that are included in the equations of motion, but for which the estimation process

is insensitive, can be omitted in the construction of the variational equations.

A method of computing the partial derivatives analytically is discussed in Section 4.9.

This analytical approach is always used in the differential correction process in GTDS

when the Variation of Parameters or Brouwer orbit generators are used and is optional in

the Cowell differential correction process.
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4.1 TOTAL PERTURBATION MODEL AND VARIATIONAL

EQUATIONS

The total acceleration vector is the sum of the accelerations induced by each of the

sources listed above (expressed in an inertial Cartesian coordinate system; i.e., mean

equator and equinox of B1950.0, mean equator and equinox of J2000.0, or true of refer-

ence date)

R = RpM + RNS + Rio + Rt) + RSR + RTAC + RT (4-1)

The total perturbing acceleration vector is usually defined as the total acceleration exclud-

ing the point-mass gravitational acceleration caused by the central body.

The Cowell equations of motion of the satellite can be written in the form

_= f(R-, _,t, p---) (4-2)

where

= column vector of the vehicle position coordinates

= vector of the dynamic parameters of dimension £

and

_-: JR(to), _(to), _-,]T (4-3)

where

_-* = constant model parameters pertaining to drag, gravitational harmonic
coefficients, etc.

The model parameters _-, which may be included in the variational equations, are as

follows:

@ Position and velocity of the spacecraft at epoch in mean of B1950.0 coordi-

nates, mean of J2000.0 coordinates, true of date coordinates, classical orbital

elements, spherical coordinates, or Definitive Orbit Determination System

(DODS) variables

4-2



• Gravitational parameter of the central body

• Harmonics of the central body

• Gravitational parameters of the perturbing bodies

• Aerodynamic drag parameter

• Solar radiation pressure parameter

• Powered flight parameters

• Attitude control parameters (not currently available in GTDS)

These parameters are determined in such a way as to reduce the differences between a

computed and an observed orbit. This orbit determination process requires the computa-

tion of variations in the state variables, R(t) and _(t), as functions of variables in this

parameter set.

If Equation (4-2) is differentiated with respect to _, the matrix equation

0_- 0R 0_ 0 R 0_" explicit

is obtained. If the time, t, and the parameter set, p-, are independent, the differentiation

with respect to t and _- can be interchanged to give

dt 2 - 0R- 0_ + -- dt + (4-5)
0 R explicit

Defining the matrices

I

A(t) (4-6a)

B(t)

3x3

(4-6b)
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o<,>: l
Lt aF )e×plicit/3xt

(4-6c)

Y(t) : taR(t)] (4-6d)
L ap J3×t

Equation (4-5) takes the form of a system of linear differential equations, called the

variational equations, as follows:

_/" : A(t) Y + B(t) Y + C(t) (4-7)

Just as the basic Equation (4-1) is numerically integrated to obtain the position, R(t), and

velocity, _(t), of the satellite, the variational equations are integrated to obtain the matri-

ces Y(t) and _' (t), which yield the required partial derivatives. These partial derivatives

are used to form the observation partial derivatives required for differential correction of

the orbit. This application is discussed in Chapter 7.

".:.2-'

The matrices A, B, and C are formulated for the case where R is of the form given in

Equation (4-1)

A- 0RpM 0RNs 0RD 0RsR 0RTAc 0RT (4-8a)__ + __ + __ + __ + .f
0R OR OR OR 0R OR

B- ORo (4-8b)
'.._

OR

C _ o_ o_ : o_,o_, _;- (4-8c)
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where

03

OR
°

= 3 x 3 null matrix

- columns of explicit partial derivatives of the acceleration with re-

spect to the model parameters:

OR% OR% aR%s
O,u O,uk OC m

• etc.

4.2 POINT.MASS EFFECTS

To first order, the gravitational attraction of a perturbing body of mass m can be approxi-

mated as that arising from a dimensionless particle of mass m located at the center of

mass of the body. An expression for the perturbing acceleration arising from n point

masses is developed in this section.

4.2.1 N POINT-MASS PERTURBATION MODEL

In the development of the perturbation model for the gravitational effect of n massive

bodies, the starting point is Newton's second law of motion and law of gravitation (Refer-

ences 1, 2, and 3).

The second law of motion for a body of mass m, acted upon by a force F, is given by

- ,4-9 F- dt

which, when m is constant, reduces to

' dZR (4-10)
F'= m_

dt 2

Here R is a vector from the center of an inertial coordinate system to the satellite.

The gravitational force acting on a satellite of mass m due to the attraction of a body of

mass mk, which is assumed to act as a point mass, given by

F--k G m mk Rkp (4-11)
= _ Rk3p
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where G is the universal gravitational constant and R---kpis the vector from the body k to

the satellite (see Figure 4-1).

_._ (SATELLITE)

INERTIAL COORDINATE
SYSTEM ORIGIN

Figure 4-1. Schematic of Point-Mass Gravitational Bodies

To obtain the total contribution from all perturbing bodies, a summation over k is per-
formed as follows:

F- = -_-'_ Gmmk --
R3 p ekp (4-12)

k=l

When this expression is substituted into Equation (4-10), the acceleration experienced by

a satellite attracted by n point masses is obtained in an inertial coordinate system as

n

d2P" - 2 Gmk _-p
dt 2 Rk3p

k=l

(4-13)
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For convenienceand easein the interpretation of results, it is advantageousto refer the
motion of the satellite to one of the perturbing bodies. The force on body j, the reference
or central body, is given by

_= _ Gmjmk --R3 Rk (4-14)
k=l

k_j

where R--k is a vector from the reference jth body to the kth body. The acceleration of the

reference body with respect to the inertial coordinate system is given by

n

ZGmkdt _ = R3 Rk (4-15)

k=l

k#j

Subtracting Equation (4-15) from Equation (4-13) yields

n n

y Omk-2Omkdt 2 - d--_ = - R3 p Rkp- R 3 R-k (4-16)
k=l k=l

k_j

Substituting R - Rj = R = _p and R---kp = R - R---kinto Equation (4-16) yields the ac-

celeration due to n point masses

-]= d2R /t -- _ [[_k-k _13 [Rkl 3 (4-17)RpM - dt 2 - R3 R + /tk Rk - R- Rk

k=l

k_j

where R--pM, R_ and R---kare expressed in mean of B1950.0 coordinates, mean of J2000.0

coordinates, or true of reference date coordinates, whichever is the basic coordinate

frame. The gravitational parameter, #, is the product of the mass of a given body and
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the universal gravitational constant. In particular, /_k = G mk for the kth body, and

/_ -- G mj for the central body.

When only the effects of the central body are included in Equation (4-17), an analytic

solution can be obtained. This solution is the basis for construction of the Variation of

Parameters methods, which are discussed in Chapter 5. Special perturbation methods are

required for orbit propagation only when additional perturbation effects are considered.

Consequently, the perturbing acceleration vector does not include the first term on the

right-hand side of Equation (4-17).

When the satellite is in a close orbit around the reference body, significant round-off

errors can occur in the computation of Equation (4-17) due to the differencing of nearly

equal numbers. When the Earth is the central body, this error has not been found to be

significant. However, it may be important in the computation of third-body effects due to

the Earth when the Moon is the central body. This difficulty can be removed by rewriting

the equations of motion in a different, but equivalent, form.

Designate IRkpl by rkp, IR-klby rk, IR---Iby r, and the included angle between R and Rk by

0 ; then

r_p -- r 2 + r 2 - 2r rk cos 0 (4-18)

The ratio 1/rkp can be expanded in terms of Legendre functions as

1 1 I+B
- [Po(cos 0) + PI(COS 0) h + P2(cos 0) h 2 + ...] = (4-19)

rkp rk r k

where

r

h = -- (4-20)
rk

B = X Pj(cos 0) hj (4-21)

j=l
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Substituting the expansion of the numerator

1 1 (1 + B) 3

I_k- _ = r_-7= r_
(4-22)

and the relationship R--k = R - R---kpinto Equation (4-17) yields

n

" "-El ]RpM - dt 2 - _-_ R + /_k " R--kp(3B + 3B 2 + B 3) - K

k=l

k_j

(4-23)

This procedure eliminates the numerical difficulty. The series in h is truncated by termi-

nating the series when h n <_ 6h , where C?h is a predetermined tolerance.

4.2.2 ASSOCIATED PARTIAL DERIVATIVES

The associated partial derivatives are given by

0RpM _ /t + _/k

k=l

+

k=l

(4-24)

ORpM
- 03

(4-25)

where I is the identity matrix of dimension three.
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The associatedC-matrix columns for the model parameters # and #k are given by

ORpM R
- (4-26)

0/t R 3

OR--'pM (Rk- R--) R--k

0#k IRk- R--I3 R_
(4-27)

4.3 NONSPHERICAL GRAVITATIONAL EFFECTS

Most solar system bodies are known to have figures that depart from the point-mass, or

spherical, model. The nonsphericity of the gravitational potential may give rise to a sig-

nificant perturbation of the satellite trajectories. Therefore, accurate orbit determination

may require the inclusion of nonspherical terms. The gravitational potentials of the Earth

and Moon are the best known of all the solar system bodies because of extensive tracking

and analysis of close Earth and lunar satellites. The figures of planets with natural satel-

lites are known, although less accurately, through study of the motion of their natural

satellites.

4.3.1 NONSPHERICAL GRAVITATIONAL PERTURBATION MODEL

The method of representing the gravitational potential due to the nonsphericity of a mas-

sive body can be found in numerous publications (References 3, 4, and 5). The gravita-

tional field of the body is derived from a scalar potential _ that satisfies Poisson's

equation

Vz/p(r, _,)_) = - 4_/tk p(r, _O,a) (4-28)

where

r -- magnitude of the vector from the body's center of mass to the satellite

_b = geocentric, selenocentric, or planetocentric latitude

_, = geocentric, selenocentric, or planetocentric longitude (measured east

from the prime meridian)
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Above the surface of the perturbing body, the mass density, O, is zero; consequently,

Equation (4-28) reduces to the Laplacian, V2_ = 0. Use of a standard separation of

variables technique yields the solution

_p(r, _,2)

n=l

CO n

n=l m=l

Pro(sin _)[S m sin rrd, + C_ cos m2]

(4-29)

where the first term is the point-mass potential for Keplerian motion; the second and third

terms are the nonspherical potential due to the sum of the zonal and tesseral harmonics,

respectively; and

1% =

pm =

s TM, c TM =

gravitational parameter of the central body

radius of the body (usually taken as the equatorial radius)

associated Legendre function

harmonic coefficients, i.e.,

• zonal harmonics for m = 0

• sectorial harmonics for m = n

• tesseral harmonics for n > m ¢ 0

(Note: Jn = - cO )

The term n = 1 is usually not present when the origin of the coordinate system is placed at

the center of mass.

The total gravitational force is the gradient of _. Therefore, the noncentral force acting

on the spacecraft due to the attracting body is the gradient of the nonspherical terms in

the potential function _.

Expressing the gradient in body-fixed coordinates (Figure 4-2), the following form for the

inertial acceleration vector is obtained (see the discussion following Equation (4-38)):

raxq O_p ( Or )r 0_0 ( Oq_)T O_p ( 02 )a"

La,b_l

(4-30)
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Z

L SPACECRAFT

#0LE

PRIME t" 'l I _ // \

MERIDIAN'_' il r_/_ _ /

ANGLE Xb

Figure 4-2. Body-Fixed System

The partial derivatives of the nonspherical portion of the potential with respect to r, (p,

and 2 are given by

a_ 1 /,

Or r r

oo n

E(_rr) n(n + 1) E

n=2 m=0

(C_ cos m2 + Snm sin m)t)Pro(sin q}) (4-31a)

a_ r

oo n

n=2 m=O

(C m cos mt + S TM sin m2)

x [P_+l(sin q_) - (m tan @) P#(sin _)1

(4-31b)

ava /_

02 r

co n

n=2 m=0

m(S TM cos rrd - C m sin rr_)Pro(sin _) (4-31c)
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The Legendre functions and the terms cos m;1,, sin m_,, and (m tan _) are computed via

recursion formulas, as follows:

(2n - 1) sin _b P°_l(sin q_) - (n - 1) P°_2(sin ¢)
P°(sin ¢) = n

(4-32a)

= m • - P n-1 (sin q_)P (sin Pn_2(sln + (2n 1) cos m-1 ' (m _ O, m < n) (4-32b)

P_(sin @) = (2n - 1) cos _ P_:l(sin _) (m m O, m = n) (4-32c)

where

P°(sin _) = 1 (4-33a)

_(sin_) = sin (4-33b)

Pl(sin cp) = cos _p (4-33c)

and

sin m2 = 2 cos 2 sin [(m - 1) 2] - sin [(m - 2) 2] (4-34a)

cos m2 = 2 cos 2cos [(m- 1)2] - cos [(m - 2)2] (4-34b)

m tan ¢ = [(m - 1) tan _b)] + tan ¢ (4-34c)

The recursion relationships above are the most efficient method of computing the com-

plete set of associated Legendre polynomials and spherical harmonics up to a certain

order and degree. However, higher degree harmonic terms can cause satellites with re-

peating ground tracks to undergo large perturbations when the trajectory and the harmon-

ic frequency are synchronized (resonant). The synchronization causes the satellite to

sample the gravitational field in such a way that large cumulative perturbations result.

Individual resonant harmonics can be computed in GTDS without using the recursive

algorithm described above. Use of a low-order recursive harmonic model with
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nonrecursive computation of high-order resonant terms is considerably more efficient

than carrying out recursive computation of the total high-order harmonic model.

The partial derivatives of r, _, and 2 with respect to Xb, Yb, and zb are computed from

the expressions

Or gbr
= -- (4-35)

Orb r

00 1 [ zb g_ OZb]
OFb= + I_ r2 + Orb.l

(4-36)

02 1 [ Oyb OXb] (4-37)
Off"b -- (Xb2 at- y2) L xb I)rb Yb OrbJ

where OXb/Ot-b, Oyb/Ofb, and OZb/Ogb are the row vectors (1, O, 0), (0, 1, 0), and

(0, O, 1), respectively.

Substituting Equations (4-35) through (4-37) into Equation (4-30) yields

ax b
= Or r 2 ]x_, + y_ Xb- (X2 + y2) Yb (4-38a)

ayb
= Or r2 v/X2 + y_ Yb + X2 + y_ _-_ Xu (4-38b)

azb (10_p) v/x2+ y20lp (4-38c)= -_r Zb + r2 O_p

where axb, ayb, and azb are the components of the inertial acceleration of the spacecraft

expressed in the body-fixed coordinate system and not the acceleration with respect to the

body-fixed coordinate system. Thus, it is necessary to transform these components into an

inertial frame before integrating the equations of motion.

Since the numerical computations of the program are calculated in the inertial mean

equator and equinox of B1950.0 or J2000.0 coordinate system, a series of transformations
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is made to represent the acceleration vector in this system. For the case of the Earth,

there are two options available to accomplish this. The first is the more accurate, whereas

the second is computationally faster.

For the more accurate option, the inertial acceleration _b, expressed in body-fixed coordi-

nates, is transformed to the inertial mean of B1950.0 or J2000.0 axes by means of the

transformation

R'--'NS= C a` Bw a'b (4-39)

where BT transforms from body-fixed to true of date coordinates and C T transforms from

true of date to inertial mean of B1950.0 or J2000.0 coordinates, as discussed in Sec-

tions 3.3.1 and 3.3.2. The matrix BT accounts for polar motion and Greenwich sidereal

time.

The simpler option neglects polar motion by assuming the geographic pole zb to be

aligned with the spin axis z in the true of date system. This allows the nonspherical

gravity components to be expressed directly in true of date coordinates. Thus, by replac-

ing (rb, xb, Yb, Zb) in Equations (4-30) and (4-35) through (4-38) by (r, x, y, z), the true

of date components are calculated directly. The longitude and latitude are calculated as

follows:

2, = a - a s (4-40)

_b = sin-] (r) (4-41)

where

a = right ascension of the spacecraft,

a s = right ascension of Greenwich

a = tan -1 (y/x)

Computation of the acceleration due to the nonspherical Moon in B1950.0 or J2000.0

coordinates requires some different operations than those used for the Earth. Because the

right ascension of the Greenwich meridian has no meaning, the step of going from body-

fixed coordinates to the true of date system cannot be implemented.
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The lunar body-fixed coordinates (also known as selenographiccoordinates) are coinci-
dent with the principal axesof inertia and are defined in the following way:

• x' axis lies along a direction nearly colinear with the Moon-to-Earth vector

• z' axis lies along the axis of rotation, or polar axis, of the Moon

y' axis lies in the equatorial plane of the Moon and completesa right-handed
coordinate system

Three rotations are necessary to transform the selenographicacceleration vector to a
vector referred to the mean Earth equator and equinox of B1950.0 or J2000.0system.The
first rotation transforms the acceleration vector to the true Earth equator and equinox of
date coordinate system centered at the Moon (selenocentric). The other two rotations
involve the precessionand nutation effects that are includedto expressthe acceleration in
the B1950.0 or J2000.0 system.These rotations are discussedin Sections3.3.1 and 3.3.3.

4.3.2 ASSOCIATED PARTIAL DERIVATIVES

The partial derivatives of _-b with respect to _b are obtained by differentiating Equa-

tion (4-30), yielding

Olp OZr
+ +

Or Of-2

o_ a2_o o_ 022
+

a¢ 02

(4-42)

The required partial derivatives of OV//ar, Of//a_, and aw/aJt with respect to r-b are ob-

tained by differentiating Equations (4-31) as follows:

m

or0 I
m i

or I

O ow I
-- t

Of-b O_l

m i

O2 I

-02_p
Or e

027_

agar

az_p

a2ar

a2_]) a21])

arO_O Ora2

O2W OzW

O,_,O(/) 022

-0r-

aeb

a9

0R

o2

aVb

(4-43)
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To minimize computations, the symmetry property of the secondpartial derivatives of 7;
is utilized as indicated below:

027; _/

Or2 r3

X

n
n=2

(n + 2)(n + 1)

n

(C m cos m2 + Sm sin rn2)Pro(sin _)

m=0

(4-44a)

027; 02_

Or&p Oq_Or

oo

n=2

X

rl

2
m=O

(C m cos rn_ + S TM sin rn2)

x [Pm+l(sin _) - m tan tp pm(sin _p)]

(4-44b)

027; 02//3

OrO2 O2Or

oo

r_--5- 2 (-_-) _

n=2

n

x2
m=O

(n + 1)

m (S m cos rn2 - C TM sin m2)pm(sin _)

(4-44c)

oo n

kt (C TM cos nag + Sm sin m2) tan _ pm+l (sin q_)
r

n=2 m=0

+ [m 2 sec 2 _b - m tan 2 _ - n(n + 1)] P_ (sin q_)]

(4-44d)
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0_0;t 020_ r

0o n

2( n2
n=2 m=O

m(S_ cos rrvl - C m sin m2)

X [l_n+l(sin _) - m tan _ Pnm (sin _)]

(4-44e)

02_ #

0;t2 - r

O0 n

2( YE
n=2 m=O

m2(C m cos m2 + Sm sin m2)Prim(sin _) (4-44f)

The partial derivatives of r, _, and 2 with respect to rb are given in Equations (4-35)

through (4-37). The required second partial derivatives of r, _, and 2 with respect to t-b

are obtained by differentiating Equations (4-35) through (4-37) with respect to rb, yield-

ing

02r (4-45)
092 1[ 1 r-b rT]- if J

[ (°Y"'_l_ z_;q (Oxb_+y b
a_-b2 = (Xb2 + y2)3/2 D.OrbI r2 j xb k orbI _-g_bJJ

[ pzqr2 _/Xb2 yb2 rb+ kOrbJ 2zb ]+ Zbl - r----_- _br-bT

(4-46)

022 2 -Yb[ f0Xu') (0Yb)lOrb2 - (x2+y2)I;l Xbtof-b,+YUt_bJJ+ (x2+y2) 0 (4-47)

0

where OXb/OF'b, Oyb/Offb, and OZb/Ot-b are (1, O, 0), (0, 1, 0), and (0, O, 1), respectively.

The symmetry properties of the second partial derivatives of r, _, and 2 yield

02 a 2 .
= (4-48a)

aXb 0yb Oyb aXb

4-18



42 _ 42 (4-48b)
axb azb azb axb

42 42

ayb aZb aZb ayb
(4-48c)

As noted previously, the potential function _p satisfies Laplace's equation, V2_ = O.

Therefore,

a21P [a2"IP a21P_ (4-49)
ox_ = - t oy_ + oz_J

In view of this and the symmetry of the matrix in Equation (4-43), it is necessary to

compute only the three elements above the principal diagonal and the two elements on the

principal diagonal.

The equations for computing the elements of the C-matrix appearing in the variational

equations (Equation (4-7)) are obtained by differentiating Equation (4-30) with respect to

C TM and S m

a_b a (alp_ Or a (alp_ a_ a (alp_ &l. (4-51)

where the second partial derivatives of _p are obtained by differentiating Equations (4-31)

with respect to C TM and S m

I''-

a ra_/aq / - 1--(n + 1) cos rrd, P_(sin +)

(_) (_.___)r,_L c r
a_72I a_/a_ I = os raZ[P._+'(sin_) - m tan_P._(sin¢)]

L°_/°_l -m sin m2 Vm(sin q_) _

(4-52)
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t m

0 FO_/Or7 -l(n + 1) sin rn2 pm(sin _)

(__) (___)n r
o7._ I in rn2[pm+a(sin _) - m tan _p Pro(sin _)]

L°vtl°; l m cosrraP '(sin _

(4-53)

As in the case of the accelerations due to nonsphericity that were developed in Sec-

tion 4.3.1, the partial derivatives for use in the variational equations must be transformed

from the body-fixed axes to inertial mean of B1950.0 or J2000.0 coordinates. As dis-

cussed previously, these transformations can be determined to high precision or by a

simpler and faster method in which polar motion is neglected.

In the more accurate option, where polar motion is accounted for, the transformations of

the partial derivatives of RNS with respect to R are determined by taking the partial de-

rivatives of Equation (4-39) as follows:

ORNs _ (B C) T Offb Ot-b (B C) T Ofib
0R 0Fb 0_ = 0--Tb-bB C (4-54)

The matrices C and B are presented in Section 3.3.1 and 3.3.2, respectively.

In the simpler option, polar motion is neglected and fib, as well as its partial derivatives,

are calculated with respect to the true of date coordinates. This is accomplished by replac-

ing (rb, Xb, Yb, Zb) in Equations (4-39), (4-42), (4-43), and (4-45) through (4-49) by

(r, x, y, z), the true of date coordinates, and by replacing the matrix B with the identity

matrix I in Equations (4-39) and (4-54).

The partial derivatives of RNS with respect to model parameters C m and S m are obtained

for the more accurate option as follows:

0RNs 0fib
- (B C) T -- (4-55)

oc m oc m

0RNs 0fb
- (B c)T __ (4-56)

as m as m

For the simpler option, (rb, Xb, Yb, Zb) is replaced by (r, x, y, z) in Equations (4-50) and

(4-51), and the matrix B is replaced by the identity matrix I in Equations (4-55) and

(4-56).
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4.4 INDIRECT OBLATION PERTURBATION MODEL

(NOT CURRENTLY AVAILABLE IN GTDS)

Up to this point, two types of gravitational accelerations acting on the spacecraft have

been considered: the acceleration due to n point masses, measured relative to one of the

point masses, called the reference body; and the acceleration arising from the nonspheri-

cal portion of the gravitational potentials of one or more of the n bodies, which directly

influence the spacecraft motion. These nonspherical attractions also affect the inertial

acceleration of the reference body, resulting in an indirect acceleration of the spacecraft

relative to the reference body (Reference 6). The two bodies of most concern are the

Earth and Moon.

Inspection of Equation (4-29) reveals the rapid attenuation of the gravitational attraction

with increasing order of the spherical harmonics and increasing distance from the body.

For the Earth, C o (or -J2) is of order 10 -3 of the Keplerian term, while all the other

harmonic coefficients are of order 10 -6 or less. In the Moon's gravitational potential, the

size of the higher order terms relative to the central term is larger than in the case of the

Earth, but the c o term is dominant. Consequently, the only nonspherical potential terms

considered for the mutual interaction of the Earth and Moon are the second zonal har-

monics of each, and the resulting effects are referred to as indirect oblation effects.

The complex motions of the Earth-Moon system, including lunisolar precession and nuta-

tion, physical libration of the Moon, and perturbations in the lunar orbit, are accounted

for in GTDS. Thus, any significant indirect oblateness effects are due to the use of a

relative coordinate system (Equation (4-16)) in place of an inertial coordinate system and

not to errors in the lunar ephemeris.

Considering the Moon to be the spacecraft, the force acting on the point-mass Moon due

to the nonsphericity of the Earth is (Section 4.3)

/_M _-M(E) : f(C_, SI, ffEM, t) (4-57)

where

C{ and S]

rEM

t

= harmonic coefficients of the Earth's nonspherical potential

= Moon's position vector in geocentric coordinates

= time argument used to determine the orientation of the inertial

and geocentric axes

4-21



Similarly, the force acting on the point-massEarth due to the nonsphericityof the Moon is

/AE_-E(M) = f(_i, 4, rME, t) (4-58)

where

4and 
rUE

t

= harmonic coefficients of the Moon's nonspherical potential

= Earth's position vector in selenocentric coordinates

= time argument used to determine the orientation of the inertial

and selenographic axes

The force acting on the point-mass Moon due to the Earth's oblateness, /AM _M(E), pro-

duces an equal and opposite force acting on the Earth. Therefore, the inertial acceleration

of the Earth due to the force of attraction between the Earth and Moon due to the oblate-

ness of the Earth and the point-mass Moon is given by

_E(E) = /AM _M(E) (4-59)

/AE

Similarly, the force of attraction between the Earth and Moon due to the oblateness of the

Moon and the point-mass Earth produces an inertial acceleration of the Moon given by

_-M(1V0 = /AE _-E(M) (4-60)
/AM

Therefore, the inertial acceleration of the Earth due to the oblateness of the Earth and

Moon is

_F. = _-E(M) + _E(E) = -/AM _M(E) _E(M) (4-61)
/aM

and the inertial acceleration of the Moon due to the oblateness of the Earth and Moon is

_'M = _=M(E) + _-M(M) = fiE _'M(E) _'E(M) (4-62)

/AM
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The resulting indirect acceleration of the spacecraft is equal and opposite to the accelera-

tion of the reference body; consequently,

I 1 1

when the Earth is

the reference body

when the Moon is

the reference body

(4-63)

The method for determining the inertial acceleration of the point-mass Moon due to an

oblate Earth, _M (E), and the inertial acceleration of the point-mass Earth due to an oblate

Moon, _E(M), are presented in Section 4.3. However, since the effects of the higher

harmonic terms can be neglected for this application and only the second zonal harmonics

considered, the gravitational potential in Equation (4-29) reduces to

_0(r, 4_) = _r (3 sin 2 4_- 1)
(4-64)

The partial derivatives of 7) with respect to r and _b are

3_0 3 bt + ReC °(3 sin 2 4_ - 1) (4-65a)
3r 2 r4

0g # Re C2° (3 sin 0 cos 0) (4-65b)
0 0 r3

and the partial derivatives of r and 0 with respect to g are

Or _ fx (4-66a)

OF r

00 1
OF r cos 0 -sin _ cos 221

sin 0 sin

COS2 0

(4-66b)
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Since the oblate potential model is symmetric about the pole, and neglecting polar mo-
tion, the inertial accelerationof the point-massMoon due to the Earth's oblateness can be

expressed in geocentric true of date coordinates as follows:

• M(E) = 0rM L0t-M./ + _---_--MM_._---_--M.}

3 BE
2 r4 Re C O (3 sin 2 _)M - 1) gMrM

3B .Rec°
+
rh cos

(4-67)

I- sin _bM c°s _: 1
sin CM sin

COS2 CM

where

BE = gravitational constant of the Earth

Re = equatorial radius of the Earth

C O = second zonal harmonic coefficient for the Earth

t-M = lunar position vector in true of date coordinates

CM = geocentric latitude of the Moon

'_M = right ascension of the Moon in true of date coordinates

The acceleration vector _-M(E) is transformed to inertial mean of B1950.0 or J2000.0

coordinates via the transformation matrix C T of Section 3.3.1.3, i.e.,

_M(E) = C x ffM(E) (4-68)

The inertial acceleration of the point-mass Earth due to the Moon's oblateness is ex-

pressed in selenographic coordinates as

r-sin Sr_ cos _E-']
_-E(M) = 3 /ZM 3/_M Rm Co I-sin CE sin (4-69)2 r_ Rmc o (3 sin 2 _E - 1) rE +

rE r4E COS _E [__ cos 2 _OE
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where

tiM = gravitational constant of the Moon

Rm = equatorial radius of the Moon

c o = second zonal harmonic coefficient for the Moon

_-e = position vector of the Earth in selenographic coordinates

_bE = selenographic latitude of the Earth

2E = selenographic longitude of the Earth

Transformation of a-E (E) to inertial mean of B1950.0 or J2000.0 coordinates yields

_E(M) = C "r M T gE(M) (4-70)

where the M x matrix transforms from selenographic to selenocentric true of date coordi-

nates (Section 3.3.3), and the C T matrix transforms from true of date to mean of B1950.0

or J2000.0 coordinates. If a true of reference date inertial system is being utilized, then

the C x matrix in Equations (4-68) and (4-70) is set equal to the identity matrix.

4.5 AERODYNAMIC FORCES AND ATMOSPHERIC MODELS

A general discussion of the aerodynamic forces acting on a spacecraft and the related

atmospheric models is presented in Section 4.5.1. Descriptions of the GTDS aerodynamic

force modeling and related partial derivatives are given in Sections 4.5.2 and 4.5.3, re-

spectively. The Jacchia-Roberts atmospheric model is discussed in Section 4.5.4, with the

related partial derivatives given in Section 4.5.5. The modified Harris-Priester atmos-

pheric model is described in Section 4.5.6, with the related partial derivatives in Sec-

tion 4.5.7. Section 4.5.8 describes the low-altitude model.

4.5.1 INTRODUCTION

The modeling of the aerodynamic force acting on a spacecraft in a near-Earth orbit is

difficult from two standpoints. First, the characterization of the density at very high alti-

tudes above the surface is extremely complex. Although the exact natures of the phenom-

ena are not well understood, there is experimental evidence that diurnal and seasonal

variations, as well as effects due to changes in solar flux and geomagnetic activity, can be

modeled with some degree of success.
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Atmospheric density models can be divided into two types. Models of the first type are

characterized by their dependence on altitude and their independence of any other pa-

rameters. Those of the second type are characterized by their dependence not only on

altitude, but also on the position of the Sun relative to the Earth and the amount of energy

emitted from the Sun.

Several atmospheric models have been constructed over the past several years (Refer-

ences 7 through 14) to account for various geomagnetic and solar activities. There are

three main types of solar radiation known to affect the atmospheric density. The first

type, which is the most important in terms of the effect on the structure of the atmos-

phere, results from solar ultraviolet radiation impinging on the atmosphere. Its effect on

temperature and density is at a maximum 2 to 3 hours after local noon. This radiation

heats the atmosphere by conduction and thereby increases the density at higher altitudes.

The process is known as the diurnal (or day-night) effect and causes a redistribution of

density, resulting in a diurnal bulge in the atmosphere.

The second type of solar activity affecting the atmosphere results from extreme ultraviolet

radiation. The atmospheric oscillations that are in phase with this solar flux are often

referred to as the erratic or 27-day variations, since the oscillations sometimes exhibit a

semiregular character for intervals of several months, during which a period of 27 days is

easily recognizable. It has been found that the decimetric flux from the Sun apparently

varies in the same manner as the extreme ultraviolet emission and can therefore be used

as a fairly reliable index of short-term solar activity. The decimetric flux, specifically the

10.7-centimeter radiation, is expressed in units of 10 -22 watts/meter2/hertz bandwidth and

is denoted by the symbol F1o.7-

The third type of radiation is corpuscular in nature and is referred to as the solar wind. It

is responsible for the changes in intensity and energy spectrum observed in the cosmic

radiation and is the largest single factor affecting short-term fluctuations in the atmos-

pheric density. Experiments onboard Pioneer V were the first to establish that the 11-year

solar (Sun spot) cycle is a phenomenon that is not localized near the Earth or its immedi-

ate environment but rather affects large volumes of the inner solar system. The solar wind

is modeled as an interplanetary plasma streaming radially and irregularly outward from

the Sun, compressing the Earth's magnetic field on the sunward side and extending it on

the night side.

Atmospheric oscillations connected with geomagnetic storms are of significant amplitude

but of very short duration (1 or 2 days). Present-day studies indicate a correlation of the

atmospheric density with the geomagnetic activity.

Apart from the difficulty of accurately representing the environment (density) at the

spacecraft location, the second aspect of the problem lies in the complication of rigor-

ously modeling the force itself as a function of the spacecraft configuration and attitude.
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GTDS provides the user with the choice of two atmospheric density models and three
types of force representation.The atmospheric density models available are the modified
Harris-Priester and the Roberts analytic formulation of the Jacchia 1971model (referred
to asthe Jacchia-Robertsmodel). The Harris-Priester model is the simpler of the two and
permits the most rapid computation of the density. It does not include effects due to
seasonalvariations or to changes in the solar flux or geomagneticactivity, as does the
Jacchia-Robertsmodel.

The aerodynamic force can be represented,at the specification of the user, as the follow-
ing:

• A simple drag force acting along the relative wind velocity vector on a spherical
spacecraft

• A force with componentsnormal to and along the axis of a cylindrical space-
craft

• A force with componentsalong each of the three spacecraft body axes for a
configuration consistingof a cylinder with solar paddles orientedat someangle
to the axis of the cylinder

Thesemodeling options, and the related partial derivatives, are described in detail in the
following subsections.

4.5.2 AERODYNAMIC FORCE MODELING

Rigorous treatment of the aerodynamics of free molecular flow involves the representa-

tion of the complex interaction of the atmospheric molecules with the surface molecules

of the spacecraft. Under certain conditions, this interaction is characterized as a _pecular

or perfectly elastic reflection of the impinging molecules. The reflection is termed diffuse

when the impinging molecules penetrate the surface, experience multiple collisions with

the body molecules, and are reemitted randomly with no memory of their prior history. In

the case of specular reflection, there is no momentum transfer and, hence, no force tan-

gential to a local surface element. Diffuse reflection does result in such a component of

force, although it is small. In general, both types of phenomena are involved in varying

degrees, depending upon the details of the surface reflectivity and emissivity, tempera-

ture, and free-stream constituents and their mean molecular motion. Conditions typical of

most actual situations result in forces that can be adequately represented in terms of the

specular reflection equations. Therefore, the force modeling in GTDS makes this simplify-

ing assumption and computes the force acting on a local surface element as the momen-

tum transfer normal to that element.

The forces on all elements of the spacecraft surfaces exposed to the free-stream must be

resolved in some coordinate frame and summed to obtain the total aerodynamic force
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acting on the spacecraft. This resolution has been performed for a number of elemental

shapes at various orientations. GTDS makes use of the force coefficients defined in

Table 4-1 for spheres, cylinders, and flat plates. A force coefficient, CF, is defined as the

nondimensional quantity

C F =
F

1 V2 (4-71)
_-O A

where

F -- magnitude of the force acting on the object

O = density of the medium through which the object is moving

V -- magnitude of the velocity of the object with respect to the medium

producing the force

A = arbitrary reference area

The velocity of the spacecraft relative to the atmosphere is determined in the inertial

coordinate system by subtracting the motion of the atmosphere, assumed to rotate with

the Earth, from that of the spacecraft, as follows:

V-_e, = 1_- (_ x R-) (4-72)

The Earth rotation vector, _, must be appropriately defined in the inertial frame (mean

equator and equinox of B1950.0, mean equator and equinox of J2000.0, or true equator

and equinox of reference date).

For the case of a spherical spacecraft, the drag acceleration is computed as follows, using

the general form of Equation (4-71) and CD = 1.0 from Table 4-1:

R--o= -ss e v--,o,IV,o,I (4-73)

where

1 CD (-_-----) 1('_ d2] (4-74)s, = 2 --
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In the above equation, d is the spacecraft diameter and m is the spacecraft mass. If there

is propulsive thrust acting on the spacecraft, the mass m is variable and is represented as

a polynomial in the burn time. The polynomial coefficients are assumed to be known.

When the spacecraft configuration is more complicated than a sphere, it is necessary to

know the attitude, in addition to the orbit, in order to model the aerodynamic force.

It is not necessary to compute the entire direction cosine matrix Q when the spacecraft is

a cylinder (with enclosing end plates). Due to the axial symmetry, it is only necessary to

know the direction cosines q11, q21, q31 of the cylinder axis. The unit vector

A A .A ^ (4-75)XB = qll i + q21 J + q31 k

then gives the axis orientation in the inertial coordinate frame. As indicated in Table 4-1,

the force component along the axis is proportional to the square of the velocity compo-

nent normal to the end plates. The normal force component is proportional to the square

of the velocity component normal to the cylinder.* Therefore, the velocity relative to the

atmosphere is resolved into normal and axial components to obtain the total acceleration

for the cylindrical spacecraft as

-- ^ A -- ^ (4-76a)N = S_ XB X (XB X V,_1)[XB X V_I[

-- ^ A (4-76b)A -- - So I %,1

R'-=D= O(N- + A----') (4-76c)

In these equations

1(. CNc "_ (A) 1 (_) (___D_) 2LD (4-77a)Sc = 2 _sin z aJ = 2 - 3m

1(. CNp -'_(A) 2 (:gdZ) = :gdZ (4-77b)S_ = 2 _,cos 2 aJ = (2) _. 4m J 4m

" This is analogous to the solar radiation case, where the force is proportional to the effective area
normal to the incident radiation (Section 4.6), and the determination of this effective area is di-

rectly analogous to the determination of the effective area normal to the relative velocity vector.
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where L is the length of the cylinder and d is the diameter. As before, m is the spacecraft
mass, which can be variable.

The third type of spacecraft configuration optionally available in GTDS is a cylinder with
solar paddles, mounted on trunnion pivots which are orthogonal to the cylinder axis. The
incidenceangle, ip, defines the anglebetween the axis and the paddle surface. The space-
craft axis system is chosen so the x axis corresponds with the cylinder axis, y is the
trunnion axis, and z is orthogonal to x and y. The y axis is directed so that positive ip
correspondswith positive rotation about y, according to the right-hand rule.

This configuration is not axisymmetric and therefore requires the calculation of the com-
plete transformation matrix Q (from body to inertial axes). It is most convenient to trans-
form the relative wind velocity into spacecraftbody axes, computethe force components
in this frame, and then transform the result back into the inertial coordinate frame. This
leads to the following equations for the aerodynamic acceleration:

VB Q-1V-rcl= XB A A A (4-78a)= i B + YB JB + ZB kB

VN = XB sin ip + ZB COSip (4-78b)

Fx. = - Sc _B I'kBI - SpVN IVNI sin ip (4-78c)

F,. = -Sc + (4-78d)

Fz. = -Sc _B ]9_ + _ - SpVN IVNIcos ip
(4-78e)

R--D = -O Q F--B (4-78f)

The definitions of Sc

contribution is

!

and Se are the same as in Equations (4-77). The solar paddle

1(. CNp _(Ap'_ 2Ap (4-79)
Sp = -_-_cos2 6[) l,.mJ = m

where the paddle area, Ap, is an input constant.
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The representation of the aerodynamic forces in Equations (4-79) does not consider the
effect of mutual shadowingor shielding from the free-streamflow between the cylindrical
and solar paddle surfaces.* Such effects are geometrically very complex, particularly if
multiple interference reflections betweencylinder and paddles are considered.The simpli-
fications resulting from the neglect of this phenomenonin Equation (4-78) are thought to
be consistent with the original assumptionof purely specular reflection in the specifica-
tion of the individual surface type coefficients.

The factor Q in the three expressionsfor _O is not simply the atmosphericdensity, Qa.It
also includes the following scale factor to permit an adjustment of the QCF product:

O = 0. (1 + 01) (4-80)

A default value of Q1 = 0 is set in the program. However, this value can be modified by

user input, or it can be estimated in the differential correction process. Adjustment of 01

does not alter the instantaneous direction of _D; it simply changes the magnitude.

Optionally, the drag scale factor 01 can be modeled as a polynomial such that

N

01 = _ ait i (N < 5) (4-81)

i=0

In addition, the trajectory propagation timespan can be partitioned into segments, and

independent values for the drag scale parameter coefficients, ai, can be specified/

estimated for each segment.

4.5.3 ASSOCIATED PARTIAL DERIVATIVES FOR AERODYNAMIC FORCE

MODELING

When the aerodynam!.c force option is exercised in GTDS, it is necessary to compute the
I

partial derivatives of RD with respect to variations in the spacecraft local inertial state for

use in the variational equations. For all configurations, the portion of the partial deriva-

tive that accounts for the effects of density variation is

0RD RD OQa

OR 0a OR
(4-82)

* Shadowing of the cylinder end plates by the cylindrical surface itself is considered.
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since density depends only upon the spacecraft local position and not upon the local
velocity. The forms for O0a/0Rare presented in Sections 4.5.5 and 4.5.7 for the Jacchia-

Roberts and Harris-Priester models, respectively.

All three forms for R'--'Dare expressed in terms of V_e_, which can be written in a slightly

different form from that in Equation (4-72), as follows:

-- -- (4-83a)V---_el= R - QR

where the matrix ff_ is given by

E°f2 = 0)3 0 - 1 (4-83b)

0)2 0)1

Thus, the partial derivatives can be computed with respect to V--_el, and these can then be

used to compute

0RD RD
m

• 0Vre 1
OR

(4-84a)

0R-=DOR--= (_) f2 (4-84b)

The partial derivatives of the three configuration forms with respect to V--_l (X1, X2, X3)

are given below:

= -Ss_9_. " /-Wr"dll )
(4-85)
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Cylinder

M = [J_a × Vrel[ (4-86a)

M2 A= (xB x %°0 (_ x %0 (4-86b)

^ -- (4-86c)
Or = XB Vrel

A A A
W--1 = (q121 - 1) i + qll q21 J + qll q31 k (4-86d)

A A A
W---2 = q21 qll i + (q21 - 1) J + q21 q31 k (4-86e)

A A A
W---3= q31 qll i + q31 q2a J + (q21 - 1) k (4-86f)

'--.2-" __ __

[ N 21]OqXi - _) Sc M W_ - M---T(Wi Vre,) + --O r qil
(i = 1, 2, 3) (4-86g)

The partial derivatives of the atmospheric drag acceleration with respect to the drag scale

factor, 01, and the drag scale factor polynomial coefficients, ai, are the following:

OR R D

o01 (1 + 01)
(4-87a)

0RD _ ORD 001 _ t i RD (4-87b)
0ai 001 0ai (1 + 01)

Cylinder + Paddles

OFx B

aXB
= - 2[S_ I_BI + so IVNI sin 2 ip] (4-88a)
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aFxs = 0 (4-88b)
aYB

0FxB
= -2Sp [VN[ COS ip sin iv (4-88c)

OFYB = 0 (4-88d)

O xB

OFyB = Fy B S¢ 3'_ (4-88e)

c3FyB Se _/B ZB (4-880

OFzB = OFxB (4-88g)

OXB O ZB

OFzB 0FyB

oyB oiB
(4-89h)

OFzB = -S¢ I_3'_ + Z2B+0ZB _'_Z_ £1 -- 2SpIVNIcos2ip+_ (4-88i)

ORb OFB Q-1 (4-88j)
0Vre, -- gO -_B

4.5.4 JACCHIA-ROBERTS ATMOSPHERIC MODEL

In Reference 13, L. G. Jacchia defined two empirical profiles to represent the tempera-

ture as a function of the altitude and the exospheric temperature. One profile is defined
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for the altitude range from 90 to 125 kilometers and the other for the region above
125 kilometers. Jacchia used these temperature functions in the appropriate thermody-
namic differential equationsto determine the density as a function of the altitude and the
exospheric temperature. He assumed that mixing is predominant between 90 and
100 kilometers and substituted the low-altitude temperature profile into the barometric
differential equation for this regime. Diffusive equilibrium was assumedabove 100 kilo-
meters, leading to the useof the low-altitude temperatureprofile in the diffusion differen-
tial equation for altitudes between 100 and 125 kilometers and the high-altitude
temperature profile for altitudes above 125 kilometers.

Jacchia solved these differential equations by integrating them numerically over the alti-

tude regions for various constant values of exospheric temperature, assuming fixed

boundary conditions at the 90-kilometer lower altitude limit. He then tabulated these nu-

merical results for use in the simulation of aerodynamic drag effects upon satellites. Most

mechanizations of this atmosphere model in computer programs have involved some

means for storing the tabular data and for interpolating values at altitudes computed by

the trajectory integration and at exospheric temperatures calculated by the Jacchia formu-

las. Although the densities determined by this model are accurate, these mechanizations

are generally slow running and/or require large blocks of core storage. In addition, the

absence of explicit analytic expressions means that the drag partial derivatives must be

calculated numerically.

C. E. Roberts, Jr., presented a method (Reference 14) for evaluating the Jacchia model

analytically, and this formulation is used in the mechanization in GTDS. Roberts found

that the barometric and diffusion differential equations could be integrated by partial

fractions, using Jacchia's low-altitude temperature profile for the range from 90 to

125 kilometers. Above 125 kilometers, Roberts used a different assymptotic function

than the one introduced empirically by Jacchia to obtain an integrable form. Apart from

the difficulties of numerical computations with a finite number of digits, the Roberts

analytic expressions match the Jacchia results exactly from 90 to 125 kilometers and to

close approximation above 125 kilometers. The existence of these analytic expressions

makes possible the computation of analytic forms for the drag partial derivatives. Since

the Roberts formulas were derived for the Jacchia 1970 model, his constants have been

adjusted for the later 1971 model. In addition, an error has been corrected in the function

W(v) given by Roberts in Equations (12) of Reference 14.

The computations begin with equations given in the Jacchia report to determine the ex-

ospheric temperature and corrections to the standard density due to various effects.

Before execution of a trajectory generation, GTDS determines the total timespan of inter-

est. Then, from a permanent data file, one set of values of geomagnetic activity data and

two sets of solar flux data are retrieved. The geomagnetic data set is the 3-hour geo-

magnetic planetary index, Kp. One set of the solar flux data is the daily average
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10.7-centimetersolar flux, F10.7,asobservedat the solar observatoryat Ottawa, Canada;
the other set is the 81-day running average (centered at the day of interest), -lo.7_:avg,of

F10.7. The solar flux data are substituted into the equation

= t=avg *.3 _:avg ]Tc 379* + 3*.24 '1o.7 + 1 [Fa0.7 - • 1o.7J (4-89)

for determining the nighttime minimum global exospheric temperature for zero geomag-

netic activity. The preprocessing computation of Equation (4-89) is done for each day of

the timespan of interest, beginning 1 day prior to the start of the trajectory. The daily

values of Tc and the 3-hourly values of Kp (beginning 6.7 hours prior to trajectory start)

are stored in a working file for use in the computation of the trajectory.

At each trajectory integration time point, the value of Tc is retrieved from the working file

for the day before the current time. This accounts for the fact that there is a 1-day lag in

the temperature variation with respect to solar flux change. This value of Tc is used to

compute the uncorrected exospheric temperature Ta from the formula

T1 = Tc{l+ 0.3[sin 22 0+ (cos22r/ - sin2'2 0)cos3°(2)1 ) (4-90)

where

1

= - 6,1 (4-91a)

1

0 = _-I_ + 6sl (4-91b)

= H - 37*.0 + 6*.0 sin (H + 43.*0) (__ < _ < _) (4-91c)

In the above equations, ds is the Sun's declination, and the geodetic latitude, _b, is given

by

1 X3
_ = tan-a{(1 f)2 [(X21 +TK2)a/2])

(4-92)
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The constant f is the geodetic flattening, and X1, X2, X3 are the componentsof the unit
position vector of the spacecraft in true of date coordinates. The parameter

H = 18070 I.._T_l-_2 - S; l c°s-' + ¥
I

(4-93)

is the local hour angle of the Sun (counted from upper culmination). The compo-

nents $1, $2, $3 comprise the unit vector to the Sun in true of date coordinates.

The effect of the geomagnetic activity upon the atmospheric temperature and density

shows a lag behind the geomagnetic disturbance. Thus, the value of Kp is retrieved from

the working file for a time 6.7 hours earlier than the current integration time point. The

correction to the exospheric temperature is given by

AToo = 2870 Kp + 0703 eKp (Z > 200 kilometers) (4-94a)

AToo = 14.'0 Kp + 0702 eKp (Z < 200 kilometers) (4-94b)

The corrected exospheric temperature is

Too = T1 + AT oo (4-95)

and the inflection point temperature is

Tx = 37176678 + 0.0518806 Too - 29473505 e -°'°°216222 T® (4-96)

These two temperatures, together with the spacecraft altitude, are used in the Roberts

equations to compute the standard density value. However, a number of corrections must

be applied to the standard density values to account for various physical effects. These

corrections are given by formulas from Jacchia's paper (Reference 13) and are presented

next, before the discussion proceeds to the Roberts equations.

In addition to the correction to the exospheric temperature, there is another direct geo-

magnetic effect on the standard density below 200 kilometers, as follows:

(A loglo 0)6 = 0.012 Kp + 1.2 × 10 -5 e Kp (4-97)
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The semiannual density variation is given by the following relationships (for altitude Z in

kilometers):

(A loglo O)SA = f(Z)g(t) (4-98)

where

f(Z) = (5.876 × 10 -7 Z 2"331 + 0.06328) e-°'°°286sz (4-99a)

g(t) = 0.02835 + [0.3817 + 0.17829 sin (2_z rSA + 4.137)]

X sin (4_r rSA + 4.259)

(4-99b)

I_'SA = 0 + 0.09544 +_ ],-I sin (2zc • + 6.035) • (4-99c)
2

• - JD1958 (4-99d)
365.2422

In the last equation, JD1958 is the number of Julian days from January 1, 1958, and

365.2422 is the number of days in a tropical year.

The correction for the seasonal latitudinal variation of the lower thermosphere is given by

(A IOglo 0)LT = 0.014 (Z - 90) e [-0'0013(z-90)2]

x sin (2_ @ + 1.72) sin ¢p Isin $[

(4-1oo)

Finally, the correction for the seasonal latitudinal variation of helium is

_s  ,oglo0.651I[sin3(-: -,_-0.35355]216sl)
(4-101)

where e is the obliquity of the ecliptic.
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As mentioned earlier, for altitudes below 125 kilometers Roberts used the sametempera-
ture profile that Jacchiaused, i.e.,

4

dl Z Cn Z n (4-102)T(Z) = Tx + 354

n=0

where

da = Tx - To (4-103a)

To = 183.'0 K (4-103b)

Co = - 89284375.0 (4-103c)

C1 = 3542400.0 (kilometers -1) (4-103d)

C2 = - 52687.5 (kilometers -2) (4-103e)

C3 = 340.5 (kilometers -3) (4-103f)

C4 = - 0.8 (kilometers -4) (4-103g)

and where Tx is the inflection point temperature (at Zx = 125 kilometers) given by

Equation (4-96). Roberts substituted the temperature profile given by Equation (4-102) in

the barometric differential equation and integrated by partial fractions to obtain

0o To') M(Z)
Os(Z) = _--7-A-r-_,Fkl exp(k Fz)

ltz,)
(4-104)
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as the expressionfor density for 90 < Z <_ 100 kilometers, where the subscript 0 refers

to conditions at 90 kilometers. The mean molecular weight is given as

M(Z) = ZAn zn (4-105)

n=0

where

Ao = -435093.363387 (4-106a)

A1 = 28275.5646391 (kilometers -1) (4-106b)

A2 = - 765.33466108 (kilometers -2) (4-106c)

A3 = 11.043387545 (kilometers -3) (4-106d)

A4 = - 0.08958790995 (kilometers -4) (4-106e)

A5 = 0.00038737586 (kilometers -5) (4-106f)

A6 = -0.000000697444 (kilometers -6) (4-106g)

These constants give a value of M(90) = Mo = 28.82678, which is not too different from

the value of the sea level mean molecular mass, Ms, of 28.960.

The value of the density at the lower limit is assumed to be constant at

_o = 3.46 x 10 -9 grams/centimeter 3. The constant k in Equation (4-104) is

k = - 354 gs R2a (4-107)

Rdl C4
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where

gs = 9.80665 meters/second2 = sea level acceleration due to gravity

Ra = 6356.766 kilometers

R = 8.31432Joules/degreesKelvin-mole (universal gas constant)

The functions F1 and F2 in Equation (4-104) are

(4-108a)

F 2 -- [ ] [ ]Ps P6 tan-' - (4-108b)
(Z - 90) A6 + (Z + Ra)(90 + R.)" + _-- y2 + (Z - X)(90 - X)

In these functions, rl and r2 are the two real roots and X and Y are the real and imagi-

nary parts (Y > 0), respectively, of the complex conjugate roots of the quadratic

P(Z) = EC; Z n (4-109)

n=0

with coefficients

Co 354 Tx Co- + (4-110a)
C4 dl C4

Cn = Cn (1 < n _< 4) (4-110b)
Ca

for values of Cn given by Equations (4-103). The parameters Pi in the functions Fi

are given by

S(rl) (4-111a)
P2 = U(r,)
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P3 =

-S(r2)

U(r2)
(4-111b)

P5 =
V

(4-111c)

P4 = {Bo - rl r2 R2a [B4 + Bs(2X + rl + r2 - R_)] + W(rl)P2

- rl r2 B5 Ra (X 2 + y2) + W(r2)P3

+ rl rz(R ] - X2 - y2) ps}/X*

(4-111d)

P6 = B4 + Bs(2X + rl + r2 - Ra) - P5 - 2(X + Ra)P4

- (r2 + Ra)P3 - (rl + Ra)P2

(4-111e)

Pa = B5 - 2p4 - P3 - P2
(4-111f)

In these parameters,

X* = -2rl rz Ra(R2a + 2X Ra + X 2 + y2) (4-112a)

V = (Ra + rl)(Ra + r2)(R_ + 2X Ra + X 2 + y2) (4-112b)

U(ri) = (ri + Ra)2(r 2 - 2X ri + X 2 + Y2)(rl - r2) (4-112c)

X 2 + y2)W(ri) = rl rz Ra(Ra + ri) Ra +
ri

(4-112d)

The function W(ri) is corrected from an erroneous expression given in Reference 14.

Finally, the coefficients Bn and the function S(Z) are given by

Bn = an + _n
TX

Y x - Y 0

(4-113a)
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8(Z) = Z B_Z_ (4-113b)
n=0

where n -- 0, 1, ..., 5, and

ao = 3144902516.672729 (4-114a)

al = -123774885.4832917 (4-114b)

a2 = 1816141.096520398 (4-114c)

a3 = -11403.31079489267 (4-114d)

a4 = 24.36498612105595 (4-114e)

a5 = 0.008957502869707995 (4-114 0

flo = -52864482.17910969 (4-115a)

fla = -16632.50847336828 (4-115b)

flz = - 1.308252378125 (4-115c)

f13 = 0.0 (4-115d)

/34 = 0.0 (4-115e)

f15 = 0.0 (4-1150

As noted above, Equation (4-104) is valid below Z = 100 kilometers, where mixing

is assumed to be predominant. However, diffusive equilibrium is assumed above
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Z = 100 kilometers; hence,the profile given by Equation (4-102) was substituted into the
diffusion differential equations (one for each constituent of the atmosphere) and inte-
grated by partial fractions by Roberts to yield, for 100 < Z <__125 kilometers,

Os(Z) = 2 oi(Z) (4-116)

i=l

Rigorously, the density at 100 kilometers, O (100), should be evaluated by means of Equa-

tion (4-104) for the particular exospheric temperature T_ of interest. However, since the

evaluation of that equation is computationally expensive, it is preferable to avoid adding

that expense to that already necessary to compute Equation (4-116). This is avoided in

GTDS by precomputing values of O (100) using Equation (4-104) for a series of values of

T_. These values have been least-squares curve fitted by the polynomial

where

6

O(100)Ms - 2 _" T_ (4-117)

n=0

_o = 0.1985549 x 10 -1° (4-118a)

_1 = -0.183349 x 10 -14 (4-118b)

_2 = 0.1711735 X 10 -17 (4-118c)

_3 = -0.1021474 x 10 -2° (4-118d)

_4 = 0.3727894 x 10 -24 (4-118e)

_5 = -0.7734110 x 10 -28 (4-118f)

_6 = 0.7026942 x 10 -32 (4-118g)
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and Ms is the sea level mean molecular mass = 28.96 grams/mole. This approximation is

used in Equation (4-116).

The constituent mass densities for altitudes between 100 and 125 kilometers are given by

Mi [V(100) ]l+a' F3Mik exp(Mi k F4) (4-119)
0i(Z) = 0(100) _ #i k _-j

The identification of the constituents and the values of the corresponding constants in

Equation (4-119) are given in Table 4-2.

Table 4-2. Atmospheric Constituents and Related Constants

INDEX
I

CONSTITUENT
MOLECULAR
MASS (Mi)

(GRAMS/MOLE)

THERMAL
DIFFUSION

COEFFICIENT
(ai)

CONSTITUENT NUMBER
DENSITY x [M,/0(100)]

DIVIDED BY AVOGADRO'S
NUMBER

N 28.0134 0 0.78110

Ar 39.948 0 0.93432 x 10 -2

He 4.0026 -0.38 0.61471 x 10 -5

02 31.9988 0 0.161778

O 15.9994 0 0.95544 x 10 -1

H t .00797 0 -

Hydrogen is an insignificant constituent at altitudes below 125 kilometers; hence, it is not

included in Equations (4-116) and (4-119). The temperature at 100 kilometers is given by

Equation (4-102) in the form

T(100) = Tx + Qdl (4-120)
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where

4

ffa = 35 -4 Z Cn(100)n = -0.94585589 (4-121)

n=0

is the precomputed value of the polynomial for 100 kilometers. The parameter k in Equa-

tion (4-119) is the same as defined previously, and the functions F3 and F4 are given by

(. Z + Ra'_ql(Z - r!.'_q2( Z - r2 )q3( Z2 - 2XZ + X2 + Y2 _q*F3 = Iq + i-ooJ 100 - rl/ _1o0 - r2J 1-0--02 - 2--00-X + _2 + _2J (4-122a)

F 4 = Y(z- lOO) ]qs(Z - 100) + q__£6ytan_l y2+ (-Z - X)-_ - X) (4-122b)
(Z + Ra)(Ra + 100)

The parameters qi are defined as

1 (4-123a)
q2 = ]d(rl)

- 1 (4-123b)
q3 = U(r2)

1 (4-123c)
qs- V

1 + rl rz(RZa - X 2 - y2)q5 + W(rl)q2 + W(r2)q3

q4 = X*

(4-123d)

q6 = -qs - 2(X + Ra)q4 - (r2 + Ra)q3 - (rl + Ra)q2 (4-123e)

ql = -2q4 - q3 - q2 (4-123f)

and X, Y, rl, r2, X °, V, U(v), and W(v) are the same as defined previously.
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Finally, diffusive equilibrium is still assumedfor the region above 125 kilometers, but the
temperature profile given by Equation (4-102) is no longer valid. Jacchia defined the
temperature for the upper region by the empirical asymptotic function

f0 (TxT0)( T(Z) = Tx + 2(Too-_¢ Tx)tan -1 .95zc _ T--x 3 1 "

x [1 + 4.5 x 10 -6 (Z- 125)2"511

(4-124)

In order to be able to integrate the diffusion differential equations in closed form, Roberts

replaced Jacchia's Equation (4-124) with the function

- To

T(Z) = Too- (Too- T×)exp [-(-TT-_x= -_-x-)( -Z -_5125-)(-Ra l+ J] (4-125)

This temperature profile is continuous at Zx = 125 kilometers regardless of the choice of

the parameter £. The slope is continuous at Zx if

t = 1.9(Ra + Zx) = 12315.3554 (kilometers) (4-126)

The value of g is not set equal to this constant in GTDS but is computed by a procedure

to be described later.

Integration of the diffusion differential equations for the temperature profile given by

Equation (4-125) yields, for the first five constituents (i = 1, 2, ..., 5) in Table 4-2,

(__)'+ai+yi (Too - __T_" (4-127)Oi(Z) = _)i(125) f-_ TxJ

where

Mi go R2 (T__- ToX.l (35))'J - ReToo 6481-.766 (4-128)
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The constituent mass densities at 125 kilometers can be obtained rigorously from Equa-
tion (4-119). However, as in the case of the density at 100 kilometers, GTDS makes a
curve-fitting approximation to give (for i = 1, 2, ..., 5)

6

IOglo [di(125)] = £ dtij T_ (4-129)

j=o

as a function of the exospheric temperature, where di is the constituent number density

divided by Avogadro's number (0i = Mi di). The polynomial coefficients 6ij in Equa-

tion (4-129) have been determined for best fits to the values corresponding to Equa-

tion (4-119) and are given in Table 4-3.

The value of the helium density computed by Equation (4-127) must be corrected for the

seasonal latitudinal variation as given by Equation (4-101). The specific form is

[Q3(Z)]corrected = Q3(Z) 10 (A l°gl° 0) He (4-130)

Above 500 kilometers, the concentration of hydrogen (i = 6 in Table 4-2) becomes suffi-

ciently large that it also must be taken into account, as follows:

,...0,[-T(500)']0+a6"_',) [ Too - T(Z)It6
_16(Z) = Q61"3U / LT--2-

(4-131)

where the hydrogen density at 500 kilometers is

M6 10_73.13 _ [39.4- 5.51ogt0(Ts00)] lOgl0(Ts00)} (4-132)
Q6(500)- A

For exospheric temperatures lower than approximately 600 degrees Kelvin, the relative

concentration of hydrogen is significant. At altitudes lower than 500 kilometers, however,

the resulting density error is partially compensated for by the least-squares fitting of

Roberts' parameter g (see Equation (4-136), given later).
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In Equation (4-131), 76 is computed by means of Equation (4-128). The quantity A in

Equation (4-132) is Avogadro's number (A = 6.02257 x 1023). The temperature at

500 kilometers is computed in Equation (4-125). Finally, the constituents are summed to

yield

6

Os(Z) = _ oi(Z) (4-133)

i=l

as the standard density for the region Z > 125 kilometers.

The standard density, as computed by Equations (4-104), (4-116), or (4-133) must be

corrected for geomagnetic activity (by Equation (4-97)), the semiannual variation (by

Equation (4-98)), and the seasonal latitudinal variation of the lower thermosphere (by

Equation (4-100)). These effects are summed logarithmically to obtain

(A loglo 0)corr = (m loglo 0)6 + (A loglo O)SA + (A loglo O)LT (4-134)

Thus, the final corrected density is

Q(Z) = Qs(Z) 10 (Al°gl°Q)e°rr
(4-135)

The standard densities, as computed by Equations (4-104) and (4-116) for the region

90 < Z _ 125 kilometers, agree exactly with values published by Jacchia in Refer-

ence 13. Above 125 kilometers, however, the values given by Equation (4-133) do not

agree exactly with the Jacchia data, due to Roberts' introduction of a different form

(Equation (4-125)) for the temperature profile at the higher altitudes. Values of the pa-

rameter t in Roberts' temperature profile were determined for a series of exospheric

temperatures, such that the resulting density profiles versus altitude (from 125 kilometers

to 2500 kilometers) gave the best least-squares fit to the Jacchia tabulated data. Three

sample fits are shown in Figure 4-3 for low, medium, and high values of the exospheric

temperature. Note that the maximum deviation from the Jacchia values is less than

6.7 percent. The best-fit values of t are shown in Figure 4-4 as a function of the ex-

ospheric temperature T_. The curve in the figure is the polynomial

4

g = _ gj T_ (4-136)

j=0
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Figure 4-4. Best-Fit Values of g as a Function of the Exospheric Temperature Too

with coefficients

go = 0.1031445 x 105 (4-137a)

gl = 0.2341230 x 101 (4-137b)

g2 = 0.1579202 x 10 -2 (4-137c)

g3 = -0.1252487 x 10 -5 (4-137d)

g4 = 0.2462708 x 10 -9 (4-137e)
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computedto best fit the optimum ! values. Equation (4-136) is programmed in GTDS to

provide the means for selecting I in Equation (4-125). In general, the values of g are

such that the slope of the temperature profile is discontinuous at Zx -- 125 kilometers,

but this is not thought to be of any serious consequence.

4.5.5 ASSOCIATED PARTIAL DERIVATIVES FOR THE JACCHIA-ROBERTS

MODEL

The equations for computing the partial derivative 0o/OR, which appears in Equa-

tion (4-82), are presented in this section for the Jacchia-Roberts model. Equation (4-135)

for the density is written in the form

e(z) = es(z) Aoc (4-138)

and the desired partial derivative becomes

The variation of the correction factor is derived from Equations (4-134) and (4-97)

through (4-100)

0(Ao¢) A0c _r f, oz
OR- -0.4342944819 [g(t) (z)_-_

+ 0.014 sin (2n @ + 1.72)e -0"°013(Z-90)2

0Zx [1 - 0.0026(Z - 90) 2] sin _ Isin _l 0R-

+ 2(Z- 90)Isin_l cos_ 0._))

(4-140)

where

r(z) = - 0.002868 f(Z)

+ 2.331(5.876 x 10 -7) Z 1.331 e-O.OO2868z

(4-141)
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The variation of altitude with position, 0Z/OR, is equivalent to 0h/0R computed in Equa-

tion (4-166) in Section 4.5.7. Differentiation of Equation (4-92) yields

0_ sin 2_
D

OR 2

m _

X1

+
X2

+
1

X3

(4-142)

The variation of the standard density is computed directly from the barometric differential

equation (Reference 13) for altitudes below 100 kilometers

O_os M g OZ 1 0T (4-143)
OR - 0s n An Z n-1 _ OR- T O

=

and from the diffusion differential equation (Reference 13) for altitudes above 100 kilo-

meters

0Os - 1[( 0'goR2a ) 0Z _-_] (4-144)OR- T R(-Z + R_) 2 O---_ + (Os + a303) aT

where

6

Q' = _ QiMi

i=l

The partial derivatives of the temperature are computed by differentiating Equa-

tion (4-102) for altitudes below 125 kilometers

"-v

( 0z0T T- To 0Tx_ 0Too
0---_ = d, _ o--_-_J -_ + n c_ z n-' (4-145)

n=l
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or Equation (4-125) for altitudes above 125 kilometers

0T 0T=

aR aR

x +x +++o( +.-+oy +.OT= T_ -- Tx 1 + j tj TJ£ --OT®J t 0g
j=l

(+4 [ ](+)- T= Ra + Zx OZ

- _--= - (Tx - To) (Ra + "_-_z" "-_

(4-146)

Finally, the derivatives of Tx and T= are computed by differentiating Equations (4-96)

and (4-90), respectively, as follows:

0Tx
= 0.0518806 + (294.3505)(0.0021622)e -0'0021622T® (4-147)

0T

o++_ o,+so[1_c+O(;)]+o
2) or/- 2.2 cos _2 r/ sin r/ cos 3"° Off

3 (c0s2.2 r/ _ sin2.2 O) cos 2 sin _-)-_-_j2

(4-148)

In the latter expression (from Equations (4-92) and (4-93)),

Or/ 1 _b-¢$_ O_b

OR 2 I_- _+1 OR
(4-149a)

ao 1 _ + _, a_
OR 2 le + _+1OR

(4-149b)
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Or _ 1 + cos -
dXi 180 30 180 OXi

OH_ 180(.SIX2- $211)
0X i _ IS1 X2 82 Nil

1 } (4-149d)x + X==) (S, + - (S, X, - X,)q

X I "S1 xlkl _-2 +s2x 2x2) xi XlX2]l'l - Xi)si "J _,

0l:
= 0 (4-149e)

OX3

In the above equations, the subscript i = 1, 2.

It might be argued that the term in Equation (4-146) involving the derivative Og/OT_

should not be included, since Roberts considered g as a constant in his integration. How-

ever, Too and Tx = F(T_) were also held constant for the integration over altitude.

Therefore, if variations in Too are taken into account, and g is a function of T_, then the

derivative of g should also be included and is computed by differentiating Equa-

tion (4-136), the best-fitting polynomial to the optimum values of g.

4.5.6 MODIFIED HARRIS-PRIESTER ATMOSPHERIC MODEL

Harris and Priester determined the physical properties of the upper atmosphere theoreti-

cally by solving the heat conduction equation under quasi-hydrostatic conditions (Refer-

ences 10 through 12). Approximations for fluxes from the extreme ultraviolet and

corpuscular heat sources were included, but the model averaged the semiannual and sea-

sonal latitudinal variations and did not attempt to account for the extreme ultraviolet

27-day effect. The atmospheric model presently included in GTDS is a modification of the

Harris-Priester concept. The modification attempts to account for the diurnal bulge by

including a cosine variation between a maximum density profile at the apex of the diurnal

bulge (which is located approximately 30 degrees east of the subsolar point) and a mini-

mum density profile at the antapex of the diurnal bulge. Discrete values of the maximum

and minimum density-altitude profiles, shown in Table 4-4, correspond to the mean solar

activity and are stored in tabular form as OM(hi) and Om(hl), respectively. Different

maximum and minimum profiles can be specified for different levels of solar activity.
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Table 4-4. Density Altitude Tables

HEIGHT
(KM)

100

120

130

140

150

160

170

180

190

20O

210

220

230

240

25O

26O

270

280

290

300

320

340

360

38O

4O0

MINIMUM DENSITY
(GM/KM _)

497400.

24900.

8377.

3899.

2122.

1263,

800.8

528.3

361.7

255.7

183,9

134.1

99.49

74.88

MAXIMUM DENSITY
(GM/KM 3)

497400.

24900,

8710,

4059,

2215,

1344.

875.8

601.0

429.7

316.2

239.6

185.3

145,5

115.7

57,09 93.08

44,03 75.55

34.30

26.97

21.39

17.08

10.99

7.214

4.824

3. 274

2.249

61.82

50.95

42,26

35.26

25.11

18.19

13.37

9.955

7.492

HEIGHT
(KM)

420

440

460

48O

5OO

520

54O

560

580

6OO

620

640

660

680

700

720

740

760

780

8OO

84O

88O

920

960

1000

MINIMUM DENSITY MAXIMUM DENSITY
{GM/KM 3) (GM/KM 3)

1.558 5.684

1.091 4.355

0.7701 3.362

0.5474 2.612

0,3916 2.042

0.2819 1.605

0.2042 1.267

0,1488 1.005

0,1092 0.7997

0.08070 0.6390

0.06012 0.5123

0.04519 0.4121

0.03430 0.3325

0.02632 0.2691

0.02043 0.2185

0,01607 0.1779

0,01281 0.1452

0,01036 0.1190

0.008496 0.09776

0.007069 0.08059

0.004680 0.05741

0.003200 0.04210

0,002210 0.03130

0.001560 0.02360

0.001150 0.01810
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Exponential interpolation is usedbetweenentries, i.e., the minimum and maximum densi-
ties, Qm and 0M, are given by

Ore(h) = 0re(hi)exp (.hi-H--mh.1 (hi < h < hi+l) (4-150a)

OM(h) = OM(hi)exp (hHM h ) (hi < h < hi+a) (4-150b)

and the respective scale heights, Hm and HM, are given by

Hm

hi - hi+l

In ['Ore(hi÷l) ]
L _)m (hi)

(4-151a)

H M =
hi - hi+l

In F QM(hi+l)
(4-151b)

A good approximation (neglecting polar motion) for the height, h, is

h=r-rs (4-152)

where rs is the radius of the Earth given by Equations (3-116) and (3-128) as

- 0
r_ = _/1 - (2f - f2) cos 2 O

(4-153)

and

r

Re=

f =

magnitude of the satellite position vector

equatorial radius of the Earth

Earth's flattening coefficient
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t5 = declination of the satellite; it is assumed that t5 equals the geocentric

latitude of the subsatellite point

If the density is assumed to be maximum at the apex of the bulge, then the cosine vari-

ation between the maximum and minimum density profiles is

00(h) = 0re(h) + [0M(h) -0re(h)] cos" (-_) (4-154)

where _p is the angle between the satellite position vector and the apex of the diurnal

bulge. The angle _, is given by

cos _p = sin 6 sin 6s + cos 6 cos 6s cos (a - as - ,_,lag) (4-155)

where

6s = declination of the Sun

a = right ascension of the satellite

as = right ascension of the Sun

2_ag = lag angle between the Sun line and the apex of the diurnal bulge
(approximately 30 degrees)

It can be calculated in vector notation as

,: cos- ( r0") (4-156)

or the cosine function in Equation (4-154) can be determined directly as

COS n
l-_/ = [ "1 + 2COS _] n/2 = [i "t" F-"2; _'lBlnl2"J

(4-157)
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where

A

UB =

satellite position vector expressed in inertial geocentric coordinates

unit vector directed toward the apex of the diurnal bulge expressed in

inertial geocentric coordinates

A

The vector UB has the following components:

UB. = cos 6, cos (a, + 11.,) (4-158a)

UBy = COS 8_ sin (as + Alag) (4-158b)

UBz -- sin 6s (4-158c)

In the modeling of accelerations in GTDS, the drag coefficient, Co, and atmospheric

density, O (h), always occur together as a product. The following error model is introduced

to account for systematic errors in either Co or O:

CDQ = CDo(1 + Q1)[1 + O2(t- to)]I1 + Q3 c°sn (-_)lOo(h)
(4-159)

where

CD0 = a priori specified drag coefficient

01 = scale factor error coefficient on CD O

02 = error coefficient of time variation of CD Q

03 = error coefficient accounting for deviations in the diurnal variation of
o(h)

t = time of the instantaneous satellite position

to = epoch time

The altitude density function, Oo(h), is determined from Equation (4-154). The quantities

01, 02, 03, and n are adjustable parameters for the error model.
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4.5.7 ASSOCIATED PARTIAL DERIVATIVES FOR THE MODIFIED

HARRIS-PRIESTER MODEL

Equation (4-159) for the product of the drag coefficient and the density can be partitioned

as follows:

CD = CD0(1 + Ol)[1 + O2(t - to)] (4-160)

Q(h) = I1 + Q3 cosn (-_)][Om + (QM - Om) cosn (_)] (4-161)

Making use of Equations (4-150) and (4-151), the partial derivative of the density with

respect to position is then given by

0Q ( 0Q OQm 0_ 0OM) 0h 00 0_ (4-162)0R- = 0--0-m0h + 00M _') 0--_+ 0_p OR

where

00 = [1- cos" (-_)] [1 + 03cosn(-_)] (4-163a)
00m

ooO0M = COS" 1 + 03 COS" (4-163b)

0Qm 0m
= (4-163c)

Oh Hm

OOM OM
= (4-163d)

0h HM
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The partial derivative of the density with respectto _pand the partial derivative of _0with
respect to R are obtained from Equations (4-156) and (4-161) as follows:

.... cos "-1 sin (QM - Om) 1

2
(4-164)

A

a'lp 1 [(R" UB)_- ._.B] (4-165)
0---_ = sin _p R 3

The partial derivative of the height with respect to R is obtained by differentiating Equa-

tion (4-152), yielding

Oh R { 1 - f)(2f - f2) cos d 1 O(cos d) (4-166)0R - R Re [1 - (2f - rE) cos 2 613/2J OR

where

o(cos 6) 1
OR R 4 cos c5 xz2]y Z 2

_ Z(X 2 + y2)

(4-167)

Substitution of Equations (4-163) through (4-167) into Equation (4-162) determines the

partial derivative of O with respect to R--, as required in Equation (4-82).

The error coefficients Q1, 02, and 03 contribute the following partial derivatives to the

C-matrix appearing in the variational equations:

oR--D R_-DCD0[1 + O2(t- to)] - R-_-D (4-168a)
001 CD (1 4- 01)

0R--D R=-D CDo(1 + 01)(t- to) = _-D(t- to) (4-168b)
1902 CD [1 + Og(t - to)]
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003 ---- O-_) Om + (_)M - Om) cosn cosn

_D cosn l_ 1

.,-o3coso
(4-168c)

4.5.8 LOW-ALTrrUDE MODEL

For orbit propagation at altitudes below approximately 100 kilometers, a low-altitude at-

mospheric density model is available. This model consists of a tabulation of the density,

0,, versus the altitude extracted from the U.S. atmospheric model (Reference 15).

4.6 SOLAR RADIATION PRESSURE

The GTDS solar radiation pressure model and the associated partial derivatives are dis-

cussed in Sections 4.6.1 and 4.6.2, respectively.

4.6.1 SOLAR RADIATION PRESSURE PERTURBATION MODEL

The force due to solar radiation pressure on a vehicle's surface is proportional to the

effective area A of the surface normal to the incident radiation, the surface reflectivity r/,

and the luminosity L_ of the Sun; and it is inversely proportional to the square of the

distance Rvs from the Sun and the speed of light c.

The magnitude of the force due to direct solar radiation pressure on an area A is there-

fore given by*

F - L_ CR A (4-169)
4_ Rv2sC

where

CR = 1 + r/ (e.g., C_ = 1.95 for aluminum) (4-170)

* The determination of the effective area A of the surface normal to the incident radiation is directly
analogous to the determination of the effective area normal to the relative velocity vector for modeling
aerodynamic forces, which is discussed in detail in Section 4.5.2.
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The magnitude of the accelerationacting on a spacecraft of mass m and area A, due to
direct solar radiation pressure at one astronomical unit from the Sun, is

F S CR A (4-171)
m c m

where S denotes the mean solar flux at one astronomical unit. The quantities CR, A, and

m are grouped together, since they are spacecraft properties and can be determined prior

to flight. The magnitude of the acceleration on a spacecraft due to direct solar radiation at

the actual distance Rvs from the Sun is given by

F S Rs2un CR A (4-172)

m c R2s m

where Rsun designates one astronomical unit, i.e., the semimajor axis of the Earth's orbit.

All of the above factors except Rw are constant for a given spacecraft and mission. For

computational convenience, P_ replaces --.S The quantity P_ is defined _.s the force on a
c

perfectly absorbing surface (r/ = 0) due to solar radiation pressure at one astronomical

unit.

The acceleration due to direct solar radiation is away from the Sun, that is, in the direc-

tion of

R_ = R - R_ (4-173)

where

= position vector of the vehicle in inertial mean of B1950.0 or J2000.0
coordinates

= position vector of the Sun in the inertial mean of B1950.0 or J2000.0
coordinates

The model for the acceleration RSR due to direct solar radiation is

_SR -- vPsR2un -CRA Rv_
m R_s

(4-174)
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where v is an eclipse factor such that

v = 0 if the satellite is in shadow (umbra)

v = 1 if the satellite is in sunlight

0 < v < 1 if the satellite is in penumbra

A simple cylindrical shadow model is used to determine the eclipse factor. From Fig-

ure 4-5, it is apparent that the satellite is in sunlight (v = 1) if

D = R---' Us > 0 (4-175)

where

R" = satellite position vector relative to the shadowing body
A

Us = solar position unit vector relative to the shadowing body

IfD < 0 and the vector

- -- ^ (4-176)S_ = R' - DUs

has a magnitude less than the body radius ap, then the spacecraft is in shadow (i.e.,

v = 0); otherwise, it is assumed that the satellite is in sunlight and v = 1.

I

IS-cl > aP _1_ i SUNLIGHT _'_c_

Igcl < ap

I
D < 0 I D = R'cos d > 0

I
I

SPACECRAFT

ap

^

_-- SUN,U s

Figure 4-5. Cylindrical Shadow Model
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4.6.2 ASSOCIATED PARTIAL DERIVATIVES

The partial derivatives of gsRwith respect to position are

0R-"SR PsR2un CRA[ 3[R-R-s][R- R-s]T]
_ - v I- (4-177)

0Rsl_
= 03 (4-178)

and for the solar pressure model parameter

k - Ps A (4-179)
m

,gR=sR _ v Rs2un CR JR-- Rs] (4-180)
Ok I_- - Rs[ 3

4.7 ATI'ITUDE CONTROL EFFECTS

The function of the attitude control system is related to two modes of operation. During

the first mode, commonly known as the acquisition and cruise mode, the attitude control

system is used to establish and maintain three-axis-stable orientation of the satellite. Such

an orientation is obtained during an interplanetary flight, for example, by fixing two

directions in space. One direction is always such that the sensitive surface of the solar

panels faces the Sun and the other direction is determined by pointing an onboard sensor

toward a predetermined star. Usually another requirement that must be satisfied during

the latter portion of the flight is that the high-gain antenna used for communications

should point toward the Earth.

In the second mode of operation, applicable during midcourse maneuvers, the attitude

control system orients the satellite so that the thrust vector of the vehicle-fixed rocket

motor is aligned along a predetermined direction in space. This orientation is maintained

during the maneuver by controlling the thrust vector to pass through the center of mass of

the satellite. After the maneuver, the attitude control system reestablishes the cruise ori-

entation.



The low-thrust forces, generatedby the normal functions of the attitude control system,
can produce accelerations of 1 x 10-7 centimeters/second 2 to 3 x 10 -7 centimeters/

second 2. This can result in a target miss of 100 to 300 kilometers at Mars, for example.

The translational forces producing the acceleration are the result of thrusters not acting in

couples, thruster misalignment and unbalance, or gas leaks through the valves during

times that the thrusters are not firing.

The attitude control perturbation model is described in Section 4.7.1, and the associated

partial derivatives are given in Section 4.7.2.

4.7.1 ATTITUDE CONTROL PERTURBATION MODEL (NOT CURRENTLY

AVAILABLE IN GTDS)

The model used to account for the attitude control accelerations has been constructed

from the application of curve-fitting techniques to telemetered data and is defined as
follows:

ax + bx(t - Ta¢l) + Cx(t - Tacl)21?rAc = ay + by(t T.cl) + cy(t T.cl)2[ [u(t- T.cl) - u(t- T.c2)] (4-181)
/

az + bz(t T.¢1) + cz(t T.cl)2J

The coefficients (ax, ay, az, Cx, Cy, Cz) are low-thrust polynomial coefficients to

be determined. The terms T_¢_ and Ta¢2 are input epochs at which the attitude control

acceleration polynomials are turned on and off, respectively. The function u is defined by

u(t- Tael)= {10 (t-(t < Tacl)Tacl)
(4-182)

u(t_ T_,2)= (10 (t ->Ta¢2)(t< Ta_2) (4-183)

The subscript x denotes the acceleration component along the spacecraft's xv (roll) axis,

the subscript y denotes the acceleration component along the spacecraft's Yv (pitch) axis,

and the subscript z denotes the acceleration component along the spacecraft's Zv (yaw)

axis.

Two transformations are necessary to represent this acceleration in the mean of B1950.0

or J2000.0 coordinate system: (1)a transformation from the vehicle-fixed coordinate

v
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k . system (xv, yv, zv) to the true of date coordinate system and (2) a transformation from

the true of date coordinate system to the mean of B1950.0 or J2000.0 coordinate system.

The transformation from the vehicle-fixed coordinate system to the true of date coordi-

nate system is described in Section 3.3.12 and is given by

_ = O gv (4-184)

where the transformation matrix Q is defined in Section 3.3.12. The matrix C T, which

transforms from the true of date system to the mean of B1950.0 or J2000.0 system, is

described in Section 3.3.1. Thus, the total transformation is given by

RTAC = Cw Q rTAC (4-185)

4.7.2 ASSOCIATED PARTIAL DERIVATIVES

Since C, Q, and _TAC are functions of time only, and not of the satellite position or

velocity, then

0RTAC 0RTAC
= = 03 (4-186)

OR O

The contributions to the variational equations (Equation (4-7)) of the control system ac-

celeration parameters ax, ay, az, ..., Cz are

0RTAc - CTQ [u(t - Tael) - u(t - Ta_2)] (4-187a)
Og

0R'---'T_AC_ (t- Ta¢l) ORTAC (4-187b)
Ob Og

ORTAC - (t - T_¢1) 2 0RTAc (4-187c)
0e- Og
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m

where g, b, and _ denote the vectors

m

a =
ax

ay

az

(4-188a)

bx]by

bz

(4-188b)

cx]Cy

Cz

(4-188c)

4.8 THRUST EFFECTS

There are many forces acting on a spacecraft during the transfer phase and orbiting

phases of its trajectory. Even though such forces have been modeled, the state of the

vehicle is still uncertain, primarily because of the imprecision associated with the injection

conditions and the physical parameters appearing in the mathematical models. Very small

errors in the thrust magnitude and/or thrust direction at injection magnify into very large

errors in the position and velocity near the target body. To avoid such errors and attain

preassigned terminal conditions, spacecraft are designed with the capability to perform

multiple propulsive maneuvers during the interplanetary phase of a mission. Furthermore,

if the spacecraft is to orbit a distant planet, maneuvering capability must be available to

inject into orbit.

The GTDS polynomial thrust acceleration model is described in Section 4.8.1, and the

associated partial derivatives are given in Section 4.8.2. The GTDS tabular thrust force

model and high-thrust maneuver modeling are discussed in Sections 4.8.3 and 4.8.4, re-

spectively.
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4.8.1 POLYNOMIAL THRUST ACCELERATION MODEL

The model describing the acceleration during corrective maneuvers is based on the reduc-

tion of data taken during the motor burn testing procedures and is represented in an

inertial true of date system by

A

rT = a[u(t - To) - u(t- Tf)] UT (4-189)

where

a

A

UT =

To =

Tf =

magnitude of the thrust acceleration

unit vector in the direction of the thrust acceleration

effective initiation time of the motor burn (ET)

effective termination time of the motor burn (ET)

and u is as defined in Equations (4-182) and (4-183).

The motor's effective burn time is

Tb = TI - To (4-190)

The magnitude of the propulsive acceleration is modeled as follows:

a = ao + al r + a2 r 2 + a3 T3 + a4 r 4 (4-191)

where

r = t - To (4-192)

Equation (4-191) characterizes the thrust acceleration as a fourth-degree polynomial in r,

the time from effective thrust initiation. The polynomial coefficients ao, al, a2, a3, and

a4 are dynamic model parameters, which can optionally be specified or estimated, and

represent the effective thrust-mass ratio as a function of time.
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A

The unit vector U T is directed along the spacecraft's thrust axis (assumed to be coinci-

dent with the xv axis). The true of date components of the vector UT are

I COS a T COS _TTI

UT = sin aT COS (4-193)

sin dv

where

aT = right ascension of the spacecraft's thrust axis relative to the true equator

and equinox of date

6T = declination of the spacecraft's thrust axis relative to the true equator and
equinox of date

The thrust axis orientation is represented by the fourth-degree polynomials in r, as fol-

lows:

aT = ao + al l" + a2 l_2 + a3 ,/.3 + a4 ,g4 (4-194a)

6T = d0 + i_1 r + 6 2 ./r2 ÷ d3 1:3 + d4 .g4 (4-194b)

where ao, al, ..., a4, t_o, ..., t_4 are dynamic parameters, which can optionally be esti-

mated.

A

The unit vector UT can also be expressed in the orbital frame system, which is obtained

from the orbit plane system (Section 3.2.5) by a translation of the origin to the center of

mass of the spacecraft and a redesignation of axes such that

t-of = Ex r-op (4-195)

where

E 1 = 0, 010 0 1

1 0 0

(4-196)
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The thrust direction is defined by a rotation of YT (the yaw angle) about the zof axis,
followed by a rotation of PT (the pitch angle) about the new x axis. The componentsof
^
UT in the orbital frame system are of the same form as Equation (4-193), with 6T re-
placedby YT and aT replaced by PT. The true of date components of UT are then given

by

^ ^ ^ (4-197)
U T = (E 1 E) T UTo _ = EoTr UTo_

where E is the transformation matrix from the inertial true of date system to the orbit

plane system (see Section 3.3.5).

The thrust acceleration is expressed in the true equator and equinox of date coordinate
^

system via the unit vector UT. The transformation to the mean equator and equinox of

B1950.0 or J2000.0 coordinate system is accomplished as follows:

_-T = cT _T (4-198)

where the transformation matrix C T is described in Section 3.3.1.

4.8.2 ASSOCIATED PARTIAL DERIVATIVES

'' A

When the acceleration RT is modeled in the direction UT given by Equation (4-193), it is

independent of both ff and _; therefore,

ORT ORT

E

0R 0_-

= 0 (4-199)

A

However, when the direction of the acceleration UT is expressed as in Equation (4-197),

the following partial derivatives are used.

Using Equations (4-189), (4-197), and (4-198), the thrust acceleration during a thrusting

interval can be expressed as

A

R-T = a (El E C) T UTo, (4-200)
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Since only the matrix E is a function of position and velocity,

0_T cT 0E T Aa _ E T__ -- UTo t
OR OR

(4-201)

and

0R=-T cT 0E T Aa ET_ -- UTo t•_ .__
OR OR

(4-202)

The rows of the matrix E are defined in Section 3.3.5 to be the unit vectors
A A A
U, V, and W. The necessary partial derivatives then can be expressed, using subscript

notation, as

OUi
= 0 (4-203)

OUi _ij x i xj

ax e r r 3
(4-204)

OW i 1 0I-4 I_4 0L

Oxj L Oxj L 20Xj
(4-205)

aW_ 1 014 1_4 OL
- (4-206)

= E o;¢j h o, j

0U_

Op [ 0
0U.._..__2 + _ U3

0p U2

0U3

0p.

0 - W3 We U3 -

OVi = W 3 0 -01 0 U10w2
Op - W2 Wl U1 -_P

OW3

Op

(4-207)

4-74



where

6ij -- Kronecker delta operator

Li = componentsof the angular momentum vector (_ x _)

L = magnitude of the angular momentum vector
__ ".L..

p = any one of the parameters of R or R, xl, x:, x3, xl, x2, X3

and

0_ = -xa 0 "1
Oxj

X2 - XI

(4-208)

I 0 - x3 x2
0Li = x3 0 - Xl

0xj - x2 Xl 0

(4-209)

3

O--p _ L Li-Op
i=l

(4-210)

The C matrix components resulting from the acceleration model parameters ao, ..., a4

are given by

ORT RT r_ (4-211)
Og a

0RT
a[u(t To) u(t Tt)] C T ^.... Ua Y_" (4-212)

Off

,2..;.

0RT
- a[u(t- To) - u(t- Tf)] ¢T _ _-T (4-213)

06
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where

ao

al

a2

a3

a4

(4-214)

i

a = "]ao

al

a2

a3

(4-215)

6=

60

61

62

63

(4-216)

y z= [1, r, r2, ..., r"] (4-217)

AEsina cos  l^ 0 U T
= = cos aT COS 6 T

Ua OaT 0
(4-218)

A

^ 0 U T
UO =

06T - COS aT sin 6 T

- sin aT sin 6T

COS 6 T

(4-219)

4.8.3 TABULAR THRUST FORCE MODEL

The GTDS tabular thrust model is appropriate for long-burn, low-thrust maneuvers. This

model provides a linearly varying thrust acceleration interpolated from values provided in
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a table of massand thrust as functions of time. The table cancontain up to 101 values of

thrust and mass, and up to 20 such tables can be included (with nonoverlapping times of

applicability). Either the thrust can be applied as provided or a correction can be esti-

mated.

The thrust acceleration vector, _-(ti), at a tabular point, ti, is computed as follows:

[F(tt) ]  (ti)
 T(ti) = (1 + kh- _l

(4-220)

where

i = 1, 2, ..., 101

ar = estimated thrust variation coefficient (set to zero when not estimating)

M(ti) = table entry for the mass (kilograms)

_'(ti) = unit velocity vector

and the thrust magnitude, F(h), in kilonewtons, is given by

F(ti) = F'(ti) C (4-221)

where

F'(ti)

C

= table entry for the thrust magnitude value (kilonewtons)

= calibration factor (0 percent to 100 percent)

The value of the thrust acceleration at any given time between maneuver ignition and
..z-

cutoff is computed by linear interpolation between two consecutive values of RT that

bracket the time in question.

If the application option is chosen for the thrust, then a_ is set to zero; and the thrust

table, mass table, and corresponding calibration factor of the thrust are the only items

used in calculating R_-T at any instant of time. If the thrust estimation option is chosen,
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then the variational equations require the partial derivative of RT with respect to a_,

which is given by interpolating between two consecutive values of the following equation:

a_-x(tt) F(t_)
u

Oar M(ti)
_'(ti) (4-222)

One thrust coefficient, ar, can be estimated for each thrust table included in the force

model computations.

The limitation to this model is that thrust levels can be applied or estimated only in the

spacecraft velocity direction.

4.8.4 HIGH-THRUST MANEUVER MODELING

For launch support, high-thrust maneuvers are modeled in the spacecraft orbit frame

coordinate system, so that the nominal maneuver parameters determined prior to launch

will be independent of the actual liftoff time. Section 4.8.4.1 describes maneuver model-

ing, and Section 4.8.4.2 discusses the estimation of maneuver parameters.

4.8.4.1 High-Thrust Maneuver Model

The maneuver is characterized by the following quantities:

tig =

tbo =

mig =

mbo =

Pig =

Yig =

Zig =

Pig =

'_rig =

i'ig =

maneuver start (ignition) time

maneuver end (burnout) time

vehicle mass at ignition time

vehicle mass at burnout time

pitch angle at ignition

yaw angle at ignition

thrust magnitude at ignition

pitch angle rate (assumed constant during a maneuver)

yaw angle rate (assumed constant during a maneuver)

thrust rate (assumed constant during a maneuver)
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The coordinate system in which the pitch and yaw angles are measured is defined in
A A A

terms of the position of the vehicle at a given time. The quantities xp, Yp, and zp are

unit vectors describing this coordinate system, where

^ r x r (4-223)
Xp -

I xvl

A

^ t- x xp (4-224)
Yp -

x

^ t" (4-225)
zp - Ivl

where g and r are the vehicle position and velocity vectors, respectively.

Two cases must be distinguished. The maneuver platform is said to be 'fixed' if the
^

(_p, yp, _ p) coordinate system is evaluated at ignition and not reevaluated during the
rest of the maneuver interval. The maneuver platform is said to be 'torqued' if the

A

(_p, yp, _ p) coordinate system is evaluated each time the thrust acceleration is com-

puted. The mass loss rate, ria, which is assumed to be constant, is given by

rn = mbo - mig (4-226)

tbo - tig

A A A

If the platform is torqued, xv, yp, and zp are computed from Equations (4-223)

through (4-225) above. The mass, m(t), at the current time of integration (t) is then found

as

At = t - tig (4-227)

m(t) = mis - rn At (4-228)

The pitch and yaw angles (P and Y) and the thrust magnitude (T) (see Figure 4-6) are

found using

P = Pig + P At (4-229)
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NOTE: THE ROTATIONS ARE FIRST ABOUT THE XpAXIS BY AN ANGLE P

AND THEN ABOUT THE -zp AXIS BY AN ANGLE Y,

Figure 4-6. Yaw and Pitch Angle Coordinate System

Y = Yig + _' At (4-230)

T = Tig + TAt (4-231)

The vehicle's thrust acceleration vector, RT, in the coordinate system of integration, is

then found using

T[cos (P) sin (Y) _p + COS (P) cos (Y) A AYp + sin (P) Zp] (4-232)
RT =

m
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4.8.4.2 High-Thrust Maneuver Estimation

Accurate prediction of the trajectory of a spacecraft during a maneuver period requires

estimation of the parameters pertinent to the thrust model (e.g., P, Y, and T and their

rates in Section 4.8.4.1). The method of determining these parameters assumes that both

the preignition and postburnout state vectors are known and that a maneuver is required

that will allow the orbit predictor to generate the postburnout vector from the preignition

vector via the normal orbit prediction processes.

4.8.4.2.1 Initialization

The initial configuration for maneuver computation is shown in Figure 4-7. From this

configuration, the following parameters are defined:

ti = time of preignition state vector

tf = time of postburnout state vector

S_ = preignition state vector = (ri, ri) T

S-f = postburnout state vector = (gf, rf) T

rmax = maximum position tolerance

i'max = maximum velocity tolerance

ti tig tbo tf

Figure 4-7. Initial Configuration for Maneuver Computation

The following preparatory steps are then taken:

1. The vector Si

2. The vector St

3. The vector Si

is integrated to tig, generating S--ig = _-ig, _ig) T

is integrated to tbo, generating S--bo = (r---bo, rbo) "r

is integrated to tf , assuming an entirely free-flight trajectory,

generating S_'= (r'b, rb) T
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,

A A

The unit vectors xp and Yp are computed as

^ _bXrb
Xp =

I?_xrbl
(4-233)

A

Yp

A

fbXXp
i

Ir-_x _pI
(4-234)

and the velocity difference at tt is computed as

(4-235)

The initial estimate of the maneuver parameters is then

Po = sin-1 (4-236)

Yo = tan -1
Xp • Ar
A

Yp

(4-237)

To
rnIA_-I

In I mig mig -- rll (tbo ti$) 1

(4-238)

Po = 0 (4-239)

Yo =0 (4-240)

"i_o =0 (4-241)
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4.8.4.2.2 Estimation

An iterative method is then invoked to successively refine the estimates of the maneuver

parameters until either acceptable agreement between the initial and computed burnout

vectors is obtained or a user-specified maximum number of iterations is reached. A de-

scription of the convergence test and differential correction process for this method is

given below, followed by a discussion.

Convergence Test

A convergence test is applied after each iteration; this test proceeds in the following

manner. First, S_g is integrated to time tbo using the current estimate of the maneuver

parameters

M-= (Po, Yo, To, Po, "_'o, 'i'o) (4-242)

thereby generating S-t_o. The miss vector, AS-, is computed as

ag = S- o- = (Av, A )T (4-243)

If [Af-I < rmax and [Arl < ?max, then the agreement is satisfactory, the current maneu-

ver parameters are accepted, and processing terminates.

Diffcrcntiol Correction Process

If the convergence test fails, the first-order Taylor series expansion of the state vector is

made using

(4-244)

where AS is the miss vector in Equation (4-243) above; and AI_, the unknown correction

to M, is given by

= (APo, AYo, ATo, APo, A'_'o, A'i'o) (4-245)
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The transformation matrix OS/0M is computed using approximations to the various par-
tial derivatives as follows:

OS = Sbo(Po + 6P) - S_o(Po) (4-246a)
0P 6P

OS _- S_o(Yo + dY) - S-bo(Yo) (4-246b)
OY 6Y

0S = Sbo(To + 6T) - Sbo(To) (4-246c)
aT 6T

OS = g_o(#o + 6P) - S_o(Po) (4-246d)

o/:, 6i:,

aS = g_o('Yo + 6_') - Sbo(_'o) (4-246e)

o+ 6,i,

--t °

aS Sbo(To + d'i') - Sbo('i'o) (4-2460

OT

where the following abbreviations are made:

S-bo(Po + OP) = Sbo(Po + 6P, Yo, To, 13o, "Yo, +o) (4-247a)

gbo(Yo + 6Y) = Sbo(Po, Yo + bY, To, 13o, 40, 'i'o) (4-247b)

Sbo('i'o + 6'i") = Sb'o(Po, Yo, To, 13o, Yo, "i'o + 6 +) (4-247 0

v
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The quantities S_o(Po+ alP),etc., are found by incrementing the appropriate maneuver
parameter (keeping the remaining five parametersat their nominal values) and using the
orbit predictor to integrate S_gto time tbo with the new maneuverparameters.The vari-
ations (6P, 6Y, etc.) are differentials whose default valuesare the following:

dP = 1 degree

6Y= 1 degree

dT = 2200 newtons

dP = 0.01 degree per second

6Y = 0.01 degree per second

6T = 4.4 newtons per second

Generation of the state vectors in Equations (4-246) requires six computation cycles by

the orbit predictor, one for each variation in the nominal values of the maneuver parame-

ters, M.

The matrix 0S/0M is then found as

D

0S
m --

0M

_ T
aS

0P

0S

aY

aS

0T

aS
"-'7-

0P

aS
----7-

0Y

_

(4-248)
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and Equation (4-244) is solved as

io ) ,
a_ = k a_J z_

(4-249)

The new maneuver parameters are then found using

m m m

M #- M+kaM (4-250)

Next, the convergence test described above is applied.

Discussion

In practice, reevaluating the transformation matrix in Equations (4-246) in every iteration

can be very time consuming if the orbit predictor uses a Runge-Kutta integration method

with a small step size for integrating over a maneuver period. A considerable savings can

be obtained if the transformation matrix is evaluated in the first iteration and then not

evaluated in the next N (user-specified number) iterations. Only when the corrections AI_

(in Equation (4-249)) are small would the full transformation matrix in Equation (4-246)

be reevaluated to reflect near convergence.

4.9 ANALYTIC PARTIAL DERIVATIVES

The differential correction process requires the development of a set of partial derivatives

called the matrizant, or state transition matrix. These partial derivatives give the relation-

ships between perturbations in the spacecraft state at observation times to perturbations

in the state at the epoch. Analytic expressions for these partial derivatives, which were

developed originally for the Brouwer-Lyddane method (References 16 and 17), are avail-

able for use with all of the orbit generators utilized in GTDS. The perturbation variables

utilized in the analytic partial derivatives are defined in such a way as to couple the

perturbation propagation process with the differential correction process. These variables
are referred to as the DODS variables.

4.9.1 DEFINITION OF THE PERTURBATION VARIABLES

In the statistical estimation process, the spacecraft dynamic state variables in • are nor-

mally expressed in an inertial Cartesian coordinate system. As a result, the estimator

algorithm solves for the differential correction, tSR]+l, to be added to the epoch state on
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the i tla iteration, Xi, to yield an improved estimate, _+a. Note that the unknowns that are

solved for are corrections to the Cartesian state variables. The variables for the Brouwer-

Lyddane theory are also state corrections, but are defined as follows:

X a =
6__a_a (semimajor axis) (4-251a)
a

x2 = de (eccentricity) (4-251b)

x3 = e 6f (true anomaly) (4-251c)

x4 = 6a (rotation about _) (4-251d)

A

x5 = 6fl (rotation about fl) (4-251e)

X6 = _ (rotation about _) (4-251f)

a

x7 = _ 6r (radial distance) (4-251g)

2
x8 = 6v (velocity) (4-251h)

na v/1 - e 2 cos E

x9 = 60 (flight path angle) (4-251i)

x19 = 6f2 + 6w (longitude of periapsis) (4-251j)

The variables Xl, x2, and x3 account for in-plane perturbations of the orbit, i.e., pertur-

bations in the semimajor axis, a, the eccentricity, e, and the true anomaly, f, respectively.

The variable x3 can also be related to a perturbation in the mean anomaly, M, as fol-

lows:

X 3 =

ell - e2

(1 - e cos E) 2
6M (4-252)
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The variables x4, xs, and x6 accountfor angular rotations of the orbit plane. Figure 4-8
illustrates an orbit around a planet. The unit vector _ is normal to the orbit plane; the

A

unit vector fl lies in the orbit plane and is displaced from the ascending node by the
AA

angle 6a. The unit vector _ forms a right-hand system with a and fl, i.e.,
A A A A
Y = a x ft. Variable x4 accounts for the rotational perturbation ha about a, x5

^
accounts for the rotational perturbation hfl about /3, and x6 accounts for the rotational

A
perturbation hlg about y. Variables x4, x5, and x6 can be related to the orbit inclina-

tion, i, the right ascension of the ascending node, Q, and the argument of periapsis, to,

as follows:

hi = x5 cos ha - x6 sin ha (4-253)

6Q = x5 sin t_a + X 6 :'OS ha (4-254)
sin i

X3
&o = x4 (x5 sin t_ a + X 6 COS (_a) cOt i (4-255)

e

/ ORBIT

•\ Y/
EQUATOR ./_ da

x

PLANE

Figure 4-8. Orbital Geometry

A A

The angle ha between the line of nodes and the fl vector defines the fl and _ directions.

This angle can be too, COo+ fo, w + f, or some other specified angle. In the equations
A

that follow, ha is assumed to be w + f, i.e., fl is directed towards the spacecraft.
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Only six of the 10 variables in Equation (4-251) are independent.Therefore, any six can
be selectedto be solved for in any orbit determination problem. The selectioncriteria are
dependent upon the sensitivity of the variables to pertinent characteristics of the orbit
being determined.Experience has shownthat variables xl, x2, x3, x4, x5, x6, and x19
are usually a reliable set of variables to use in a variety of Earth orbital missions. The
dependenceof the variables on orbital characteristics is shown in Table 4-5.

Table 4-5. DODS Variable Dependency

x2

e I f_ oJ M E f r 0 6a V

X3

x4 ps

p," tt

Xe l_' P_ P_

X7 _ tt

Xe _ P" P" _ P" p_

p,,

XlG

The Brouwer-Lyddane theory was developed for use with drag-free orbits. However, for

high-altitude, small-eccentricity orbits, the primary effect of drag is a secular change in

the mean anomaly. This effect is relatively small and is noticeable only over a long period
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of time. Consequently,an optional first-order correction to the mean anomaly is included

of the form

m 3

Zh_¢[DRAC_ -- Z 2 Npq(t- tq) p (m = 0, 1, 2, ..., 19) (4-256)

q=O p=2

where

Npq = Brouwer drag parameters

tq = reference time associated with the Brouwer drag parameters

The correction is applied to the mean motion as follows:

M" = " (4-257)no At + 1VI At + Mo + AMDRA_

Forty DODS variables, which account

tion (4-256), are defined as

for the forty drag parameters Npq in Equa-

N2q (q = 0, 1, ..., 19) (4-258a)
X20+q -- n2

N3q (q = 0, 1, ..., 19) (4-258b)
X40÷q -- n 2

These variables are estimated by means of the differential correction process to determine

the secular corrections to the mean anomaly.

4.9.2 STATE TRANSITION MATRIX ELEMENTS

The statistical estimation algorithm requires the matrix of partial derivatives of the obser-

vations f(ti) at time ti with respect to the solve-for state variables xj at the epoch time to.

These partial derivatives are computed as follows:

Of(h) Of(h) Og(ti)

Oxj Of(h) Oxj
(j = 1, 2, ..., 19) (4-259)
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The partial derivative of the observation model f(ti) with respect to the osculating
Cartesian state vector g(ti) is modeled as described in Chapter 7. However, the partial
derivatives of the osculating Cartesian state with respect to the DODS variables must be

determined. When the Brouwer or Brouwer-Lyddane theory is being utilized, 0g(ti)/0xj is

obtained analytically, where the solve-for variables xj are the DODS variables. When one

of the other GTDS orbit generators is used, requiring numerical integration of the orbital

equations, two options are available: (1) the required partial derivatives can be obtained

from numerical solution of the variational equations or (2) the above analytic partial

derivatives can be used by replacing, via the chain rule, the required partial derivative in

Equation (4-249) with

a_-(ti) O_-(ti) OXk

0xj 0Xk 0Xj
(4-260)

where, in this case, the variables Xk are the DODS variables, the first term on the right

represents the analytic partial derivatives of the osculating Cartesian state with respect to

the DODS variables, and the second term represents the partial derivatives of the DODS

variables with respect to the appropriate solve-for variables, depending on the orbit gen-

erator being used.

The analytic partial derivatives of the osculating Cartesian state with respect to the DODS

variables are approximated by two-body Keplerian partial derivatives evaluated using the

osculating Keplerian elements at ti and to. This approach neglects the higher order ef-

fects of the Brouwer secular variation, as well as the partial derivatives of the osculating

position and velocity with respect to the Brouwer mean position and velocity. These par-

tial derivatives, which are developed in Reference 18, are presented below.

0_ 3
= g- --(t- to) r (4-261)

0Xl 2

0 r r 3 ¢t t-(t - to) (4-262)

0Xl 2 2 r 3

0x2 = (1 - e2 ) (cosEo + e) g- ln(2 - e2 - e cos E)(sinE) (4-263)
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, [ox2 (1 e2) (cosE) r
# sin E

n 1.2 (1 + e cos E - e 2 - e2 cos 2 E) t-]
(4-264)

OV a2[ sinE [2 cos Eo + e sin 2 Eo- 2e - (1 - e 2) cos E]
ox3 -- Tt

+ [1 - (2 cos Eo + e sin 2 Eo - cos E) cos E] _t}

(4-265)

Or n a 4

Ox3 _/1 - e 2 r 3
{[1 + 2 cos E(cosEo - cos E)

-e[cos E(sin2E + cos 2 Eo) + 2 cos Eo]

A
+ e2(2 cos 2 E + cos 2 Eo) - e 3 cos 3 E] P

A
-f] - e 2 sin E{(cosEo - cos E)[e(cosE + cos Eo) - 2]} q

(4-266)

0F ^
= 12

{}X4
x F (4-267)

Or A •
= a x r

OX4
(4-268)

0F A
-#xF

ax5
(4-269)

Or A _
= fl X r

ax5
(4-270)

OF A
- Y x F

0x6
(4-271)
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Or ^ •
= y x r (4-272)

0x6

at- = 2 at- + (1 - e2) cos E -t- - v/'i - e 2 sin Eo -t- (4-273)
0x7 Oxa 0x2 Ox3

Or = 2 Or-- + (1 - e 2) cos E ....0r f] e2 sinEo 0r (4-274)
0x7 0xl 0x2 0x3

0t- = (1 - e cos Eo)-_-Xl + (1 - e 2) cos Eo OF v/i " - e z sin Eo 0t- (4-275)
0xs 0x2 0x3

Or Or (4-276)0r _ (1 e cos + (1 - e 2) cos Eo 0______F_ fi-- e 2 sin Eo--
0xs - Eo) _ 0x2 0x3

0t- = _ 5 - e2 sin Eo 0t- _ (e + cos Eo) 0t- (4-277)
0x9 0x2 0x3

0r _ v/i - - e z sin Eo--0r _ (e + cos Eo) 0r (4-278)
Ox9 Ox2 Ox3

0F a(1 - e cos Eo) 2 [_v/i- - e2 (sinE) _ + (1 - e2)(cosE) _1] (4-279)0X19 = (1 7 e_(i = e cos E)

0r = a4n(1 - e cos E)2[ A ]0X19 _fi - _ (e - cos E) P - _- e 2 (sinE) _1 (4-280)

A A A
where p and q are unit vectors in the orbit plane, with _ directed toward perigee and q

A A A

advanced 90 degrees in the direction of motion from perigee, i.e., q = a x p. The

parameter n is the mean motion.

The Brouwer mean elements are utilized when the above equations are used for determin-

ing the partial derivatives at time t. Although the Brouwer mean elements at time t are
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not determined from two-body relationships, the above equations still provide a good
approximation for the state transition matrix elementsfor the mean motion.

The partial derivatives of the position and velocity with respectto the DODS drag parame-
ters x20, ....... , x59are

0t-

0X20+q

= no tq) (4-281a)

O r (t - tq) 2 ^

0x2o,q = _o_ {(cscE - eo) P + ¢ri - e 2 (sinE) _t} (4-281b)

0g 0g
= no(t - tq) (4-282a)

0X40+q 0X20+q

0r = n0(t - tq) 0r (4-282b)
0X40+q 0X20+q

In the above equations, q = 0, 1, ..., 19.

4.9.3 CONVERSION OF DIFFERENTIAL CORRECTIONS

Use of the preceding partial derivatives results in the expression of the state perturbations

at epoch time in terms of DODS variables. Consequently, the weighted least-squares esti-

mator algorithm yields the differential corrections in terms of DODS variables. These

corrections must then be converted into more meaningful variables, such as Keplerian

elements or Cartesian components. Specifically, GTDS converts the DODS corrections

xl, x2, ..... , x19 into corrections of the Brouwer mean elements, i.e., Keplerian elements.

The reference mean elements at epoch are then updated to begin the next iteration.

As described in Section 4.9.2, when analytic partial derivatives are used in GTDS with

orbit generators other than the Brouwer or Brouwer-Lyddane techniques, the statistical

estimation algorithm is modified by introducing the partial derivatives of the DODS vari-

ables with respect to the solve-for state variables appropriate for the orbit generator in

use. The estimation algorithm then yields the differential corrections in terms of these

solve-for state variables.

Only six of the DODS variables described in Section 4.9.1 are independent. The user has

the option of selecting which elements are to be corrected. The following conversion
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equations show the dependencyof the mean Keplerian element corrections on all the
DODS variables. However,only the six independentvariables selectedfor inclusion in the
differential correction processshould be included. All the other DODS variables should
be set equal to zero. The following equationsalso include the conversionrelationships for
the related variables E, f, r, 0, da, and V:

Aa = a )[1 + 2a x7 + a 3 _5 xs (4-283a)

Ae = x2 + _1x7 + _5_6xs + r_sx9 (4-283b)

Ai = x5 cos 6. - x6 sin 6. (4-283c)

A_ - 1 . (x5 sin 6a + x6 cos 6.) (4-283d)
sin I

1
A(.o = ---x 3 + x4 - _12 x5 - _13 x6 - _3 x7 - _7 x8 - _9 x9

e

(4-283e)

AM L _11 X3 + _3 _11 X7 + _7 _11 X8 + _9 _11 X9 + _11 X19

e

(4-2830

AE = --1 _1oX3 + _3_1oX7 + _7_loxa + _9_1oX9 + _aoX19
e

(4-283g)

1 /zl 9Rqh'_
Af = ,.-.v._,--X3 + _3 X7 + _7 X8 + _9 X9 + XI9

e

Ar = _2 x7
(4-283i)

A0 = x 9
(4-283j)

m(_a = x4 - _12 x5 - _13 x6 -I- x19
(4-283k)

AV = _ _4 X8 (4-283_
2
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where

C1 =
1 - e 2 - r 3 V 3 cos 0

/_a2e
(4-284a)

r 2
C2 =

fl
(4-284b)

Ca = C1 (2a e + r cos 0 + _2(1 + e cos f) - 2a (1 - e 2)
r e sin f

(4-284c)

C4 = n_/1 - e 2 cos 2 E (4-284d)

C5 = --Vt_4 (4-284e)

C6 = (1 - e 2) a 2 - r 2 COS2 0
2e

(4-284 0

_7 =
t_5 C6 (2a e + r e + r cos iF) - a 3 (1 - e 2)

r e sin f
(4-284g)

r V 2
Ca =

/_ae
sin 0 cos 0 (4-284h)

_9 =
Cs(2ae + r cos f)

e sin f
(4-284i)

1 - e cos E
Clo

vq - e (4-284j)

CII = (1 - e cOS E) 2

4_ - e 2
(4-284k)
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_12 ----
cos i sin 6_ (4-284/)

sin i

_13 = cos i cos 6, (4-284m)
sin i
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CHAPTER 5--FORMULATION OF THE ORBITAL

EQUATIONS OF MOTION

5.1 INTRODUCTION

Direct analytical solution of the differential equations describing the motion of a satellite

perturbed by the total acceleration vector (Equation (4-1)) is not possible. Historically,

solutions to this problem have been obtained using two principal approaches. In one ap-

proach, known as the General Perturbation Method, the perturbation model is limited

such that an analytical solution is possible. Brouwer theory is a well known orbit genera-

tion technique that falls in this category. Brouwer formulated the problem of an Earth

satellite, perturbed by point-mass and zonal gravitational effects, in terms of canonical

variables and analytically solved the resulting Hamilton-Jacobi differential equations to

first order in a small parameter, using the Von Zeipel method. The resulting orbit genera-

tion method is extremely efficient, but its accuracy is limited by the restricted perturba-

tion model and the truncated small-parameter expansions (Reference 1).

In a second approach, known as the Special Perturbation Method, the entire perturbation

model can be included in the differential equations (also known as the equations of mo-

tion). The differential equations are solved by the numerical integration techniques de-

scribed in Chapter 6. The Cowell method is the best known orbit generation technique

that falls into this category. In the Cowell approach, the equations of motion are ex-

pressed in terms of the total acceleration vector (i.e., point-mass central body effects plus

perturbing accelerations) and solved directly for the position and velocity vectors.

Considerable research has been done that focused on improving the accuracy and effi-

ciency of orbit generation methods. This research indicates that there is no best orbit

generation procedure for all orbit types. For this reason, several orbit generation formula-

tions are included in GTDS; taken together, these formulations are suited to a broad range

of accuracy and efficiency requirements for the various classes of satellite orbits sup-

ported by GSFC.

In general, development of optimum methods for orbit prediction consists of reformulat-

ing the equations of motion in terms of a new set of variables such that the resulting

equations are more amenable to solution. The principal guidelines used in these refor-

mulations are given below.

1. (_hoose a dependent v_riable set that is appropriate for the n_merical method of

solution.

General Perturbation Methods usually require the use of canonical variables, which are

amenable to the use of averaging transformation techniques such as the Von Zeipel
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method. Similarly, in the Special Perturbation Methods, selection of appropriate variables

may be dictated by the numerical method of solution. For example, the accuracy of nu-

merical integration formulas increases with order. However, each integration formula has

a numerical stability region, outside of which the error growth is exponential (see Refer-

ences 2 and 3 for a more complete discussion of numerical stability). For a given set of

differential equations, this stability region dictates the allowable stepsizes. As a result,

changing dependent variables can affect the stability characteristics of the process.

Reformulations of the Class I1 equations of motion* in terms of other dependent variables

usually results in a set of Class I equations of motion,* e.g., the Variation of Parameters

equations (Section 5.7). In general, Class I multistep numerical integration formulas

(Equations (6-21) and (6-26)) have smaller regions of numerical stability than the Class 11

multistep methods (Equations (6-22) and (6-27)). Consequently, the numerical stability

characteristics of the transformed equations of motion are a very important consideration.

Well-behaved equations of motion, i.e., those that change only slightly due to a small

change in the elements, will yield large regions of numerical stability in terms of stepsize,

thus allowing the use of the accurate high-order formulas. For example, element sets that

are constants, or vary linearly with time in the unperturbed problem, yield equations of

motion that are more numerically stable than the corresponding set of equations ex-

pressed in terms of the position and velocity coordinates.

2. Choose an independent variable so as to achieve a uniform local error over the entire

orbit.

Efficient numerical integration can be achieved by adjusting the stepsize to achieve a

uniform local error over the entire orbit. For near-circular orbits, fixed-step integration

produces a uniform local error when time is the independent variable. To achieve a uni-

form error for eccentric orbits, a mechanism is required for using a small time step in the

region of large perturbations and a large time step in the region of small perturbations. A

variable stepsize integration algorithm is available in GTDS (see Section 6.9); however,

frequent stepsize changes are costly and usually introduce error. For this reason, formula-

tions have been developed that achieve a uniform error through analytic stepsize regu-

larization, accomplished through the use of an independent variable other than time. A

new independent variable s, related to the time t by

ds = -_-.dt (5-I)

is available in GTDS, where r is the magnitude of the satellite's position vector and n is
known as the uniformization constant. The effect of such a transformation is that fixed

* Class I differential equations are of the form dy/dx = f(x,y); Class II differential equations are of the
form d2y/dx 2 = f(x, y)
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steps in s yield smaller steps in time for small r (where the perturbations are usually

larger) than for large r.

The appropriate choice for the uniformization constant depends on both the dependent

variable set and the local error source. In the Cowell method, the primary source of local

error is inaccurate integration of the point-mass and J2 gravitational effects of the Earth.

A uniformization constant of 3/2 is appropriate for these perturbations and is used in the

Time Regularized Cowell orbit generator (Section 5.3). The Delaunay-Similar (DS) equa-

tions of motion (Section 5.5) are uniformized for the J2 oblateness perturbation through

the choice of a uniformization constant of 2. The Kustaanheimo-Stiefel (KS) formulation

(Section 5.4) uses a uniformization constant of 1, which removes the singularity at colli-

sion from the equations of motion. In the Intermediate Orbit formulation (Section 5.11),

the uniformization constant can be adjusted to produce uniformization with respect to the

dominant source of local error. It should be noted that uniformization of local error can-

not be achieved through analytic stepsize regulation alone for highly elliptic, long-period

orbits, for which both the nonspherical effects of the Earth and lunar effects are equally

important. In such cases, a variable stepsize algorithm is also needed.

o Choose a dependent variable set in terms of which the solutions to the unperturbed

problem are closed, explicit expressions in the independent variable.

In General Perturbation applications, the need for such dependent variable sets is clear.

However, such variable sets also are advantageous for use in Special Perturbation Meth-

ods. Differential equations for quantities that vary slowly and smoothly with time are

known to be more amenable to numerical integration methods (i.e., more numerically

stable) than those for quantities that vary rapidly. In the case of satellite motion, the

acceleration caused by the attraction of the primary body is usually much greater than the

perturbing accelerations arising from other bodies, nonspherical effects, etc. Since de-

pendent variable sets exist that yield closed, explicit.solutions to the unperturbed prob-

lem, it is logical to remove the point-mass effects of the primary body from the

differential equations by considering the relative elliptic orbit described about the primary

as a first approximation to the motion. Thus, the equations of motion of such dependent

variables include motion arising only from the perturbing acceleration vector. Methods

that employ this approach are known as Variation of Parameters (VOP) methods (Sec-

tion 5.7). GTDS includes VOP orbit generators that use Keplerian, equinoctial, rectangu-

lar, Delaunay-Similar (DS), and Kustaanheimo-Stiefel (KS) element sets. The resultant

formulations vary with respect to the regularity of the dependent variables and the choice

of independent variables. GTDS also includes the Intermediate Orbit formulation, in

which the equations of motion represent the variation, arising from other perturbations,

about the solution to the point-mass Earth plus J2 problem.
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4. Choose a completely regular dependent variable set.

It is desirable, from the standpoint of generality, to use a set of dependent variables that

is well defined, or regular, for the full range of possible orbital conditions. For example,

the Keplerian and Delaunay variables are not well defined for small eccentricities or for

small or near 180-degree inclinations. Unfortunately, regularity and the requirement for

tractable canonical formulations of General Perturbation Methods appear to be mutually

exclusive. For this reason, the Brouwer-Lyddane formulation was developed in terms

of Poincar6 rather than Delaunay variables for use with small eccentricity and small incli-

nation satellites. For Special Perturbation applications, the KS and rectangular variables

are completely regular. The equinoctial elements consist of two variable sets which to-

gether yield a completely regular set except at collision.

5. Choose a dependent variable set for which the eauations of motion are completely

The practical effect of singularities in the equations of motion is to cause rapid oscilla-

tions in some of the orbital elements when the orbit is in a near-singular condition. This

condition is not desirable from the standpoint of efficiency in numerical integration.

Accurate integration of such equations requires extremely small stepsizes in the near-

singular region. The rectangular variables and equinoctial elements yield completely regu-

lar equations of motion except at collision. The KS equations of motion are completely

regular, while the VOP equations of motion are singular for the Kepler and Delaunay

elements at small eccentricities and at small and near 180-degree inclinations.

6. Choose a dependent variable set such that the equation_ of motion have dynamically

stable solutions for the unperturbed problem.

A solution is dynamically stable if small variations of the initial values produce a variation

of the solution that remains small for any value of the independent variable greater than

zero. Dynamic stability is one of the primary motivations for the KS transformation. This

characteristic should be particularly advantageous when the solution is obtained via nu-

merical integration.

7. Choose an element set for which the equations of motion do not contain short peri-

odic effects.

As mentioned previously, the efficiency of numerical integration is optimal for the inte-

gration of variables that vary smoothly and slowly. Elimination of short periodic effects

from the equations of motion significantly smooths the dependent variable motion, thus

allowing the use of very large stepsizes. The Intermediate Orbit elements and the Method

of Averages (Section 5.8) use this approach. The equations of motion of an averaged

element set are integrated. The resulting orbit generation method is extremely efficient

but is limited to average element accuracy rather than the osculating element accuracy

achieved in high-precision methods.
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It shouldbe noted that severalof the guidelines statedabove are mutually exclusive. The
requirements of the specific application dictate which of the guidelines are most impor-
tant. The characteristics of the orbit generation methods available in GTDS are summa-
rized in Tables 5-1 and 5-2.

The choice of an optimum orbit generation method is dependenton the orbit type, accu-
racy, and efficiency requirements. In general, the reformulated high-precision methods
are more accurate than the Cowell method. However, the transformations required in
these formulations increasecomputational time; therefore, thesemethods shouldbe used
only for orbits for which they yield improved accuracy at larger stepsizesas compared
with the Cowell method, or where these methods have a more appropriate method of
analytic stepsize control than does Time Regularized Cowell.

For circular orbits, analytic stepsizeregularization is not necessary.In fact, integration of
the time equation increasescomputational time and can introduce errors into the solution.
For orbits with eccentricity greater than 0.1, analytic stepsizeregulation is usually benefi-
cial. The independentvariable is therefore an important consideration in the choice of the
orbit generation formulation. As the uniformization constant is increased, the size of the
time step at perigee decreasesand that at apogee increases. This constant should be
chosenso that the local error is uniformized over the entire orbit.

For applications that require high efficiency, it is important to consider the number of
output points required. Using analytic methodssuchas Brouwer theory, the computational
cost is directly proportional to the number of output points. However, when numerical
integration is used, the cost is mainly dependenton the arc length and not the number of
intermediate output points. For DC applications, the computational cost of the averaged
orbit generation methods is often competitive with that of Brouwer theory and offers
considerably greater flexibility with respect to the perturbation model.

5.2 COWELL METHOD

The Cowell equations of motion of a satellite are expressed by the general formula

d2F /t F= +P
dt 2 [ F [3

(5-2)

where

t = position vector in an inertial Cartesian coordinate system

t = physical time
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/z --- gravitational constant of the central body

= total perturbing acceleration

The acceleration P can include any of the perturbing accelerations discussed in Chap-
ter 4.

This set of three Class H differential equations is solved directly for the position vector

using the StSrmer-Cowell numerical integration formulas (Equations (6-22) and (6-27)).

The three Class I equations for the velocity vector r

dr btV
= + p (5-3)

dt I t-I 3

are integrated using the Adams numerical integration formulas (Equations (6-21) and

(6-26)) in the case of velocity-dependent perturbations, such as atmospheric drag.

The Cartesian coordinates and the equations of motion are regular, except at collision.

This method can be used for elliptic, parabolic, and hyperbolic orbits. The point-mass

gravitational attraction of the primary body appears explicitly in the equations of motion

and is usually the dominant acceleration that must be integrated.

For circular orbits, the choice of time as the independent variable produces a uniform

local error with respect to the integration of the two-body acceleration at each integration

step. The Time Regularized Cowell formulation (Section 5.3) was developed to achieve

uniformization of local error in the case of noncircular orbits.

5.3 TIME REGULARIZED COWELL

Efficient numerical integration is aided by making the local error uniform at each integra-

tion step. With the Cowell method, the equations of motion (Equations (5-2) and (5-3))

must be uniform with respect to the dominant local error source, which is generally the

point-mass and J2 gravitational accelerations. These equations are already uniform for

circular orbits. For noncircular orbits, however, the Cowell equations must be reformu-

lated in terms of a new independent variable s, defined by the relationship

d {_ d

dt r n ds
(5-4)

where n is the uniformization constant and r is the magnitude of the position vector. The

resulting equations of motion are called the Time Regularized Cowell equations. The
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choice of 3/2 for n uniformizes the local error with respect to the point-mass and J2

gravitational effects.

Under this general transformation, the Time Regularized Cowell equations of motion be-
come

r2"_r (5-5)F" = n - r (2n-3) F+ --_-P (t, F, --_-r )

where the prime notation refers to differentiation with respect to the independent vari-

able s. This equation involves derivatives with respect to the variable s only. The inertial

position vector is obtained by integrating Equation (5-5) using the Class II

St6rmer-Cowell formulas (Equations (6-22) and (6-27)). The inertial velocity vector is

obtained by integrating Equation (5-5) using the Class I Adams formulas (Equa-

tions (6-21) and (6-26)). Since the velocity appears explicitly in the equations of motion,

the velocity equation must be integrated event in the case of velocity-free perturbations. In

addition, the following Class 11 equation is integrated for the time:

,, n r2"-1 /" (5-6)t =

Comparison of the Time Regularized Cowell and the Cowell integration schemes indicates

that the favorable properties of simplicity, precision, and adaptability are shared by both

methods, while for highly eccentric or drag-perturbed orbits, the analytic stepsize regu-

larization afforded by the Time Regularized Cowell method is superior. It should be noted

that uniform local error cannot be achieved through analytic stepsize control alone for

highly elliptic, long-period orbits with equally important contributions from the nonspheri-

cal effects of both the Earth and Moon. For these cases, a variable stepsize algorithm, or

regularization of both time and the separation from the Earth center of mass, should be

used.

5.4 KUSTAANHEIMO-STEIFEL (KS) FORMULATION

By means of the KS transformation, the nonlinear equations of two-body motion are trans-

formed to a set of linear, dynamically stable differential equations, similar to those of an

unperturbed harmonic oscillator (see Reference 4 for a complete derivation). This trans-

formation consists of choosing a set of regular dependent variables such that the resulting

differential equations are regular, i.e., have no singularities. Regularization of the dif-

ferential equations requires the extension of the position and velocity vectors from
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three-dimensional to four-dimensional vectors. "I_he singularity at collision is removed by

choosing the generalized eccentric anomaly E as the independent variable, such that

dE 2o9
= (5-7)

dt r

where the frequency to is related to the negative of the total energy to -- _,/'_--2. In addi-

tion, this transformation produces analytic stepsize regulation with a uniformization con-

stant of 1. Therefore, a time equation must also be integrated. A time element r is

introduced such that

1
t = r- --(_, 0-') (5-8)

CO

where _ and if' are the transformed position and velocity vectors (if' -- d_/dE), and the

notation (_, _') denotes the scalar product of the two vectors. This time element varies

linearly with the independent variable for unperturbed motion and is therefore more ame-

nable to numerical integration than the time equation. (See Appendix B for a more de-

tailed discussion of the time elements.)

Regularized equations of motion behave considerably better with respect to numerical

integration than the corresponding nonregularized equations. For unperturbed two-body

motion, every solution to the regularized differential equations is dynamically stable. This

means that small variations of the initial values produce a variation of the solution that

remains small for any positive value of the independent variable. Dynamic stabilization of

the KS equations of motion is accomplished by using a time element and by including as a

dependent variable the frequency a_, which is related to the total energy, and taking

advantage of the fact that it is a constant of the motion for conservative forces. Conse-

quently, a total of 10 equations of motion are integrated.

The KS equations of motion are formulated as VOP equations in terms of regular ele-

ments: the frequency to, the time element 3, and the two vectors of four components

each, _ and ft. Elements are quantities which, during unperturbed two-body motion, are

constants or linear functions of the independent variable. The advantage of introducing

elements is that they vary almost linearly if the motion is subjected to weak perturbations.

5-10



5.4.1 THE KS VARIATION OF PARAMETERS 0,"OP) EQUATIONS OF MOTION

The KS equations of motion are VOP equations in Lagrangian form. The equations for _-

and fl are

< , t'rvur(oV p.)]2dw} (7)-- "-_------ + 7t_ 2LT + w dE if' sin (5-9a)

dfl (__.w__jz[ V r__(.av _)] 2do) ) (__) (5-9a)dE = - -2- _ + 4_0ff 2LT + o) dEff' cos

while the equations of motion for the time element "r and the frequency _0 are

dr 1 r ( OV p) 2 do)(_, if,) (5_lOa)dE = 8off (_ - 2r V) 16o) 3 if' Off 2LT a_2 dE

do) _ r 0V 1 (g,, LT p--) (5-10b)

dE 8m 2 Off 2w

In the above equations,

V = perturbing potential function

= additional perturbing accelerations

/_ = gravitational constant of the central body

L = KS transformation matrix defined by Equation (5-21)

In GTDS, the perturbing potential V which is used is the potential arising from the J2

nonspherical effects given by

1}V = -_" _ 1_ J2 _ 3_ 3 (5-11)

where Re is the radius of the central body. The quantity F represents the perturbing

accelerations due to higher harmonics, drag, radiation pressure, etc.
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The components of g, the transformed position vector, and g', the transformed velocity

vector, are obtained from the elements as follows:

= _-cos + /_ sin (5-12)

g' = -_- _ sin + _ _ cos (5-13)

The magnitude of the position vector is

r = u_ + u_ + u 2 + u42 (5-14)

The position vector g of the satellite is computed for use in the evaluation of the perturb-

ing accelerations using Equations (5-37) through (5-39). The velocity r is also computed

in the case of velocity-dependent accelerations, using Equations (5-40) through (5-42).

The physical time is computed from

t = r- 1(_, u3 (5-15)
(9

The notation (_, g') denotes the scalar product of the two vectors.

The transformed components of the perturbing accelerations are computed as

(L T P)I = ul PI + uz P2 + u3 P3 (5-16)

(L x P)2 = - Uz P1 + Ul P2 + U4 P3 (5-17)

(LT P)3 = - u3 P1 - u4 P2 + ul P3 (5-18)

(L T P)4 = U4 P1 - u3 P2 + u2 P3 (5-19)
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5.4.2 TRANSFORMATION FROM CARTESIAN POSITION AND VELOCITY TO

KS PARAMETRIC VALUES

The KS transformation is defined as

_= L(u) ff (5-20)

where X-is a vector whose first three components are the Cartesian position coordinates

and the fourth component x4 is always zero, i.e., x- = (x, y, z, 0).

The matrix L(u) is the KS matrix with components given by

1U 1 -- U 2 -- U 3

- U3
L = u2 ul -- U4 (5-21)

U3 U4 Ul U2

U4 - U3 U2 U

The elements of this matrix are computed as follows.

Assuming that _ and r are given at the instant t = to, the radial distance is computed

from

r = _/x 2 + y2 + z2 (5-22)

and the frequency from

20)2- #r _[i-1 12 - V (5-23)

where V represents the perturbing potential, which is the J2 potential in GTDS (see Equa-

tion (5-11).

If x >_ 0, the parametric state vector is found from

1 (r + x) (5-24)
u ] + u] =

1.12 =
y ua + z u4 (5-25)

r + x
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U 3 =
z ul - y u4

r +x
(5-26)

or, if x < O, from

1

u_ + u] = _-(r- x) (5-27)

U 1 =
yu2 + zu3

r - x
(5-28)

U 4 =
z u2 - y u3

r - x
(5-29)

The derivatives of the transformed position vector with respect to E are

, 1
U 1 =

4w
(ul_ +uss/ +u3_) (5-3o)

, 1
1.12 =

4w
-- (--U 2 X + U 1 5/ + U 4 Z) (5-31)

, 1
U 3 =

40)
-- (--I.13 X -- U 4 5/ + U 1 Z) (5-32)

, 1
L14 -

4w
- --(u4_ -u35/ +u2_) (5-33)

The initial value of the time element is

1

(9
(5-34)

v
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If E = 0 is adopted as the initial value of the eccentric anomaly, then

-- m
a = U (5-35)

and

D

fl = 2if' (5-36)

5.4.3 TRANSFORMATION FROM KS PARAMETRIC VARIABLES TO

CARTESIAN POSITION AND VELOCITY

Using Equation (5-20), the Cartesian components of position are calculated from

x = u 2 - u22 - u 2 + u 2

y = 2(u1 u2 - u3 U4)

(5-37)

(5-38)

z = 2(Ul U3 + U2 U4) (5-39)

and the Cartesian velocity components are determined from

, , , ._
40) (U 1 Ul U 2 U 2 U 3 U 3 ac U 4 U 4}

r
(5-40)

40)

r

' ' ' 4)- -- (U 2 U 1 -I- U 1 1d2 - U 4 U 3 - 133 U (5-41)

, , , ._
4w (u3 Ul + U4 U2 + Ul U3 + U2 U 4}

r

(5-42)
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5.5 DELAUNAY-SIMILAR (DS) ELEMENTS

The DS method is a VOP formulation that was developed using the generalized true

anomaly as the independent variable, such that

dt r 2

ds

where L, G, and • are defined later in this section (see References 5, 6, and 7 for a more

complete discussion).

This choice for the independent variable is particularly appropriate for numerical integra-

tion of the oblateness perturbation. The dependent variables are a generalization of the

classical Delaunay elements and are singular for e = 0, i = 0, and at collision. The trans-

formation of the equations of motion is carried out in terms of canonical variables. This

approach leads to the requirement for a canonical variable, conjugate to the physical time,

which is the negative of the total energy. The resulting set of equations of motion is

uniformized with respect to integration of the J2 nonspherical perturbation.

The geometrical and physical interpretations of the eight DS elements for the unperturbed

problem are as follows:

= true anomaly

g = argument of pericenter

h = longitude of the ascending node

8 = "mean" mean anomaly

= measure of the perturbing energy, which vanishes in unperturbed motion

G = total angular momentum

H = z component of the angular momentum

L = total energy

where Lo is the initial value of the total energy.

This set of DS elements contains one fast variable, the generalized true anomaly _. The

element [ has been defined such that it is a constant in the case of unperturbed motion.
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For the two-bodyproblem, the DS elementsyield closedand explicit solutions in terms of
the independentvariable. Not all of the DS elementsare osculating.The reasonis that the
orbits are situated on the energy surface

F = F0 + r2V = 0 (5-44)

where Fo is the unperturbed Hamiltonian.

This energy manifold dependson the perturbing potential V. The compute the osculating
elementsat a certain time, the potential V must be set equal to zero since, by definition,
osculating elementsrepresent the Keplerian position and velocity with respectto the mov-
ing coordinate system inherent in the VOP equations of motion.

In the following sections,the DS elements vector is denoted by

(al, a2, a3, a4, as, a6, a7, as) = (_, g, h, t, _, G, H, L) (5-45)

5.5.1 THE DS VARIATION OF PARAMETERS (VOP) EQUATIONS OF MOTION

The DS equations of motion, which are VOP equations in canonical form, are as follows:

4

dai 0F0 +V 0 (___) r2 2 0(_0___xj )__ _ _ + -- (Di+,@ pj (i = 1, ..., 4) (5-46)
ds Oai+4 Oai+4 q

j=l

4

dai+4ds = - W 0 (--_-)-0ai rE2q Dij a(-_x j p j) (i=l, ..., 4)(5-47)

j=l

where xl, x2, and x3 are the three components of t- and x4 is the time. The quantity V

is the perturbing potential given in Equation (5-11), and the scaling factor q, defining the

time transformation in Equation (5-43), is given by

k

q

1 (5-48)
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The unperturbed Hamiltonian Fo is given by

/t

Fo = a5 2,/_8 (5-49)

and its derivatives by

0Fo
= a (540)

0as

0Fo
= 0 (5-5a)

Oa6

0Fo
- 0 (5-52)

Oct7

OFo /_

Oa8 (2a8) 3/2
(5-53)

The vector P is the additional perturbing acceleration vector expressed in rectangular

coordinates. The extension of phase space by the inclusion of time and total energy as

variables results in the introduction of an additional canonical force

P4 = - 0Fo . p- (5-54)
or

The elements of the 8 x 4 matrix D

D

0(Xl, X2, X3, X4)

O(al, a2, ..., as)
(5-55)
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are computed by the following relationship:

19Xi Or Ori (i = 1, ..., 3)

Oai Oaj ri + r Oa--T (j = 1, ..., 8)
(5-56)

where

rl = cos(a_ + a2) cos a3 - sin(a1 + a2)sin a3 cos I (547)

r2 = cos(a1 + a2) sina3 + sin(a1 + a2)cos a3 cos I (5-58)

r3 = sin(a1 + a2) sin I (549)

and

[aTI
cos I -

6/6
(5-60)

sin I = sign (a7) _/1 a72
(5-61)

r

1 + e cos al
(5-62)

1(p = ; a6 - a5 +
(5-63)

_/1 - 2a8 p
(5-64)
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The partial derivatives of _rl, rz, r3, and x4 are given in Table 5-3; the partial derivatives

of r, p, q, and e are given in Table 5-4. The vector O(r2/q)/Oa is evaluated using the

relationship

_ (r2_ 2r _r r 2 _q (5-65)
Oai _qJ q Oai q2 Oai

The conservative accelerations present in V give rise to a differential equation for L, the

total energy of the orbit,

where

dL r2( Ov )ds - q O-xx4 P4 (5-66)

OV
= P4 = 0 (5-67)

0x4

Therefore, L is a constant in this case. This fact is exploited in GTDS by not numerically

integrating the equation for L when only conservative forces are present. This avoids

cumulative magnified errors in other elements that are driven by small numerical errors

in L.

5.5.2 TRANSFORMATION FROM CARTESIAN POSITION AND VELOCITY TO

DS ELEMENTS

It is assumed that _-, r, and t are given. In order to numerically integrate the DS equa-

tions of motion, the initial values of the DS variables are computed. The total angular

momentum G is computed from

G = _/G 2 + G 2 + G 2 (5-68)

where

-- "- (5-69)G=t-x r

v
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Table 5-3. Partial Derivatives of the Auxiliary Parameters 31, 32, 33, x4

at1/

at2/

at3/

ax4/

- sin(a I + a2) cos a 3

- cos(a I + a2) sin a3 cos I

- sin(a I + a2) sin a3

+ cos(a I + a2) cos a 3 cos I

cos(a I ÷ a2) sin I

(2a8)3/2

l

r 2
(I - c2) 3/2-1

P2 _i

/Oa2

_a I

0¢2

Oa 1

Or3

laa3

- cos(a I + a2) sin a 3

sin(a I + a2) cos a 3 cos I

cos(a I + a2) cos a 3

sin(a I ÷ a2) sin a 3 cos I

laa4

Orl/

or2/

or3/

OX4/ '

/8a5 /aa6

1 sin(al + a2 ) sin a 3 cos

a6

1
- -- sin(a I + a2) cos a 3 cos

a6

1 cos 2 I
sin(a I + a 2)

a6 sm I

/_ _/_ e2 r

(2_3/2 -

r 1) aex sin a I (_ +

ax 4

aa 5

/aa7

_ I sin(a1 + a2 ) sin a 3
a 6

I sin(al + a2 ) cos a 3
a 6

1 cos I sin(al +
d6 _in i a2)

/Oa8

3 /_ r

2a-"8 (a4 - x4) (2a8)3/2 P

x V_ e 2 sin a I (p + I) ae-
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Table 5-4. Partial Derivatives of the Auxiliary Parameters q, p, e, r

Oq/

ap/

ae/

or/ e r 2 sin al
P

/aa2 /8a3 /Oa4

ap/

ae/

or/
r Op

P 8a5

IOa5 IOa6 IOa7 18a8

- a8 8p

e _ 8a_

8e

r _8a-- cos a I

m

r 8p

8p

8a5

a8 8p

e _ 8a 6

u

8e

-/z

2(2a8) 3/2

(2a8) 3/2

_1-
_-¥ ,P +

8p

8a5

a8 8a

8a6
r m

8a6
cos a 1

m

8p

8a5

_e

r -- co$ a 1
8a5
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The z componentof the angular momentum G is given by

H = G3 (5-70)

The total energy L is computed as

1
L = ---vZ + -- -V

2 r
(5-71)

where

r = _/x 2 + y2 + z2 (5-72)

v = _/_2 + 92 + _2 (5-73)

and V is given by Equation (5-11).

The perturbing energy • is

/z
= G - _/G z + 2rZV + 2¢%

(5-74)

The generalized true anomaly is computed as

sin
_0--tan-' _-oos _ )

(5-75)

where

cos V_= e
(5-76)

p/" [_ 4rV 0 L cos _)]-'
-- + +

sin_p - er E _ /re
(5-77)
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/. = (g" _) (5-78)
r

(5-79)

e _/1 2L= - -- p (5-80)
/t

and

q[ 0(r2/q)] (5-81)

This last derivative, given by Equations (5-48) and (5-65), depends only on L, G, and

given above.

The longitude of the ascending node h is given by

h = tan -1 G(-S--G_-z/ (5-82)

and the argument of pericenter g by

g = u-_p (-_t _< g _< x) (5-83)

where

u = tan-1 [ z(G_ +G G_) - G3(xG1 +yG2)](yG1._xG2) (5-84)

The eccentric anomaly E is computed as

[_/1- e tan(-_)] (-:r ___ E _< _r) (5-85)E = 2 tan -1 1 + e

v
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and the variable t is given by

/z IE_ 79_ eli _ e2 r sin79] (5-86)g = t- (2L)3/2 P

5.5.3 TRANSFORMATION FROM DS ELEMENTS TO CARTESIAN POSITION

AND VELOCITY

Predicted values of the DS variables (79, g, h, g, _, G, H, and L) obtained from the

numerical integration must be transformed to physical Cartesian position, velocity, and

time to evaluate the perturbing forces and for computation of observations. The following

equations yield the Cartesian state:

_" = _'X1 + _'X2 (5-87)

• D

r = c-x1 + d :x2 + CXl + d x2 (5-88)

m

where _ and d are the vectors

IcOS g cos h - sin g sin h cos

os g sin h + sin g cos h cos I__sin g sin I

(5-89)

-sing cos h - cos g sin h cos I_
= sin g sin h + cos g cos h cos (5-90)

cos g sin I

and

xa = r cos 79 (5-91)

x2 = r sin 79 (5-92)

and cos I, sin I, and r are computed using Equations (5-60) through (5-64).
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The required derivatives for the velocitiesare given by

Ec =dg (5-93a)

d (5-93b)

kl = /" cos _- r_' sin (5-94a)

Xz = /" sin _ + r _ cos Tp (5-94b)

The quantity i"can be expressed directly in terms of DS elements as

[_ 4rV (1 L cos _)]
/. _ e r 2 sin _ + +

p _/_ /_e
(5-95)

and _ is given by Equation (5-81).

The physical time is computed from

(E- _p- reef]- e2 sin_0) (5-96)t = t + (2L)3/2 P

where E is computed from Equation (5-85) and g is computed from Equation (5-86).

5.6 PICARD ITERATION USING CHEBYSHEV SERIES

The Picard iteration method used in GTDS (derived in Reference 8) can be used to inte-

grate the Class I Cowell equations of motion

d r -/t t- - (5-97)- +p
dt r 3

d_- • (5-98)-- = r

dt
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using the following iterative process (Reference9):

I;rn,1 (t) = r (to) + _ (t', rn, rn) dt' (5-99)

ttn+l(t) = t(to) + rn+l dt' (5-100)
.tt0

The starting values t0(t), r0 (t) are arbitrary continuous vector functions on the interval

[to, t], which satisfy the given initial conditions

to(to) = t(to) (5-101)

ro (to) = r(to) (5-102)

In the present version of GTDS, t0(t), ro (t) are solutions to the unperturbed problem

(P = 0 in Equation (5-97)). Since the sequence converges to a close approximation of the

exact solution, the method can be used to generate very accurate solutions. Except at

collision, the Cartesian coordinates and equations of motion are regular, which means

that the method can be used for elliptic, parabolic, and hyperbolic orbits.

In order to solve Equations (5-97) and (5-98) for a given value of n (i.e., to accomplish

one iteration), the Chebyshev series is used as follows. The position and velocity vectors

available from the (n- 1) st iteration, rn-1 and rn-1, are evaluated at the Chebyshev points

in time. (The precise locations of the Chebyshev points are given in the next section.)

The forces (per unit mass) are then evaluated at each of these points in time (using the

values of in-1 and rn-1). These special values of the acceleration vector are then used to

determine the interpolating polynomial in time in the form of a Chebyshev series. The

coefficients of the Chebyshev series are determined directly from the special values in a

rather simple way due to the orthogonality of the Chebyshev polynomials (as described

later in this section). The Chebyshev series representation of the acceleration is then

integrated to obtain the Chebyshev series representation of the velocity to within an arbi-

trary constant of integration. The constant of integration is determined by requiring that

the initial velocity r (to) agree with the series for the velocity evaluated at to. The result is

an approximation to in. Similarly, the series representation of the velocity is then inte-

grated to obtain the series representation of the position, where now the initial posi-

tion t(to) is used to determine the constant of integration. The result is an approximation

to tn, thus completing one step of the Picard Iteration procedure.
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The preceding set of operations is repeated until two successiveapproximate solutions
agreeto within a tolerance that can be specified by the user. This completes one step of
the integration, and the processis continued stepwiseuntil the final time is attained.

A finite Chebyshevseries fitted to a function has the significant property of making the
least possible maximum error of all the common interpolating orthogonal polynomial
series.The maximum error committed, as well as the overall truncation error, diminishes
as the number of points used in the fitting increases.Since the error in the fitting of the
accelerationsoscillates with an amplitude less than or equal to the maximum error, the
errors partially cancel each other during integration.

The Chebyshev series solution is derived in the following manner. The interval of

time (to, tt) is mapped linearly onto the interval (-1, 1) by means of the expression

(t- t_o)_= 1-2 ._
(5-103)

where

to

tf

tt - to

= normalized time

= initial time

= final time

= interval of time for which the orbit is to be integrated by

Chebyshev series

The normalized time _ = 1 corresponds to t = to. The time points for which the

Chebyshev series is to be fitted are the zeroes of the (N + 1) st Chebyshev polynomial. At

these points, the Chebyshev polynomials have an orthogonality property with respect to

summation. The Chebyshev polynomials Tj are defined as

Tj (_)= cos j(cos -1 _) (-1 _< _ _< 1) (5-104)

and the N + 1 Chebyshev points are given by

_k =
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An interpolating polynomial PM(_), representing the ith component of acceleration as a
function of the normalized time _, is expressedas a finite seriesin Chebyshevpolynomi-
als

M
?

PM(_) = Z q Tj(¢)

j=0

(5-106)

where M is the degree of the polynomial (M < N) and the prime denotes that the first

term is factored by one-half (if M = N, the last term should also be factored by one-half).

The quantities cj are numerical coefficients which are determined from the ith accelera-

tion components r'i (_k) at the Chebyshev points by means of the relationship

N
tt

q- N

k=0

(5-107)

where the double prime indicates that the first and last terms (for j = 0 and j = M) are

factored by one-half.

The integration with respect to time is carried out using the following formula:

ftj(_) d_ - 2] [(j_..._)Tj+I(_) - (j-_ITj_,(_) ] (j > 1) (5-108)

Special cases hold for j = 0 and j --- 1, i.e.,

f To(_) d_ = TI(_)
(5-109)

f 1 T2(_)] (5-110)TI(_) d_" = [To(_) +

The coefficients for the integral of the series for PM(_) are represented by bj, i.e.,

M+I

pM(X) dx ; bj Tj(_) (5-111)
1

j=0
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At _ -- 1, this expression for the ith velocity component is set equal to the initial value of

•that component of velocity by adjusting the constant b0 to satisfy this condition. A similar

adjustment is made after the integration of the velocity components to match the series

evaluated at g = 1 with the initial component of position.

The integration formulas lead to a simple relationship between the quantities bj and cj,

given by

• !

1

bj -- (q-1 - q+l) [1 < j < (M+I)] (5-112)

where CM+I = CM+2 = 0 by definition, and b0 is obtained as described above.

Once the values of c1 are known, the summations required to evaluate PM(O for any

value of time can be done more efficiently by use of a backward recurrence relationship.

Intermediate quantities dj are computed using the algorithm

dj(_) = 2_ dj+l(_) - dj+2(_) + cj (5-113)

for j = M, M-l, ... 0, starting with dM+l(0 = riM,2(0 = 0. The value PM(O is then com-

puted from

1 - d2(Ol (5-114)PM(O =

5.7 GAUSSIAN VARIATION OF PARAMETERS FORMULATIONS

In real space, the unperturbed satellite orbit is a conic section lying in a plane that has a

constant orientation, shape, and size relative to an inertial frame. For a perturbing accel-

eration that is small compared with the central attraction, the characteristics of the conic

section (e.g., semimajor axis, eccentricity) vary slowly with time. To a lesser extent, the

attitude of the orbital plane with respect to the inertial frame is a continuous function of

time. However, the satellite's position along its orbit changes rapidly with time.

The numerical integration process is improved by introducing state variables that take

advantage of this disparity of effect. The introduction of such variables allows comparison

of the motion within the plane to a reference orbit and treatment of the motion of the

plane as a slight correction. The VOP method uses this approach.
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In this section, three orbit generatorsare discussedthat are basedon the Gaussianform
of the VOP equations

0a _ 0a _ (5-115)
Ot Or

where

a -- slow element

r = velocity vector

= perturbing acceleration vector

and

_ o#Off = fl, + __ _ (5-116)
Ot Oi"

where

fl = fast element

fl' = derivative of fl for unperturbed two-body motion

These three orbit generators differ in the choice of dependent variables, i.e., either

Keplerian, equinoctial, or rectangular elements. Some of the Keplerian elements become

undefined when the inclination is zero or near 180 degrees, when the eccentricity is zero,

and at collision. The equinoctial elements (discussed in Section 3.2.6) and rectangular

elements are selected to eliminate all singularities except for collision• All three genera-

tors use time as the independent variable and are therefore well suited to the accurate

integration of circular orbits. The Keplerian, equinoctial, and rectangular VOP formula-

tions are discussed in Section 5.7.1, 5.7.2, and 5.7•3, respectively.

5.7.1 KEPLERIAN ELEMENTS

The input initial conditions for an orbit in GTDS can be expressed as rectangular compo-

nents of the position and velocity at a given time t. The equations used in GTDS for the

5-31



conversion of rectangular position and velocity components to Keplerian elements are
discussed in Section 3.3.8.3. For calculation of disturbing forces and for printout, GTDS
converts instantaneousvalues of the Keplerian elements to rectangular components of
position and velocity. The formulation used for these conversions is discussed in Sec-

tion 3.3.8.1. Although all three classes of Keplerian orbits (elliptic, parabolic, and hyper-

bolic) are treated in the conversions, the VOP methods of GTDS apply only to the elliptic
case.

The VOP equations of motion for Keplerian elements are taken in the form of the

Gaussian planetary equations

da 2r
= p (5-117a)

dt n 2 a

de ^dt- n _ e yp X p - Xp _p + _n- e2 r]" P
(5-117b)

[ °o;]di - (yp Xp - Xp yp ) COS i + " P (5-117C)

dt na 2 fi - e z sin i

d£2 1 0t-
P (5-117d)

dt n a 2 5 - e 2 sin i Oi

dt n a 2- - (L A COt i 0F " P (5-117e)
= e Xp + N _p) + A -e 2

dM 1 [ 1-e 2 ]
n + 2t- (L ^ -

dt - n_- - e Xp + n _p) P (5-117f)

where Xp and yp are the orbit plane coordinates given in Equation (3-176), xp̂ and ypA

are Keplerian unit vectors defined in Section 3.2.5 and given by the inverse of
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Equation (3-190), and P is the perturbing acceleration vector. The following auxiliary
quantities are also defined:

n = _ (5-118a)

OQO---g-g=I-il (5-118b)

I( z sin fa t

OF - z cos Q (5-118c)

0i xp sin a) + yp cos ¢o) cos

a 2
L = -- [e cos E - 1 - sin 2 E] (5-118d)

r

a 2 sin E
N = (cos E - e) (5-118e)

rv/-1- _ e 2

The eccentric anomaly is obtained by solving Kepler's equation according to the method

described in Section 3.3.8.1.

5.7.2 EQUINOCTIAL ELEMENTS

Since disturbing forces are calculated as rectangular components, and initial values can

be rectangular components of position and velocity, GTDS has a capacity for converting

Cartesian coordinates to equinoctial elements (see Section 3.3.9.2). The transformation

from equinoctial elements to Cartesian coordinates is discussed in Section 3.3.9.1. The

Gaussian equations in equinoctial elements are given by the following expressions (Refer-

ences 10 and 11):

da _ 2r V (5-119a)
dt n 2 a

[1 k ]- (5-119b)dh _ [(2J<1 Y, - X1 5",) f - X1 JK1 gl + -_- (qIY1 - pX,) _' • P
dt
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-_- = - [Yt Y_ [ - (2X_ Y_ - 2(_ Y_) _] - -_ (qlYt - p X,) _ ' 1_ (5-119c)

o[2r - ]-_- = n- a---_r+_ k ah -h ak 1
n 8 2n k 0/_ + (q I Yt p Xl) ff Ir (5-1190)

dP 1.1 "I"P_' + q2 1d'-T = 2G v_ _ • i_ (5-119e)

dqdt =[(1 + p2 +q2)I2G x:_] "1_ (5-1190

where

G = n a 2 _/I - h 2 - k 2 (5-119g)

^ A

The f, g, and _v unit vectors are defined in Sections 3.2.5 and 3.3.9.1, while the compo-

nents of the position and velocity vectors in the orbit plane X1, Y1, )(1, _'1, and fl are
defined in Section 3.3.9.1.

5.7.3 RECTANGULAR FORMULATION (Not Currently Implemented in GTDS)

The initial Cartesian components of position and velocity completely define any orbit

whether it be elliptic, parabolic, hyperbolic, or any degenerate rectilinear orbit. From the

initial position and velocity, a completely general closed-form solution of the two-body

problem is available for determining coordinates and velocities at any other time (Refer-

ence 12). The closed-form solution avoids the singularities associated with different types

of two-body motion. In the rectangular VOP formulation, the dependent variables _0 and

1"o are the initial conditions at the time to on an osculating two-body trajectory that yields

the same state Yo and ro at time t as that of the perturbed trajectory. The dependent

variable is the time. The osculating position and velocity at time t are obtained by insert-

ing the perturbed initial conditions for the time of interest in the standard closed formulas

for two-body motion.

The dependent variables, or perturbed initial conditions, are all slow variables, i.e., their

time derivatives are all zero when the perturbing accelerations are set to zero. (A
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perturbed initial condition is indicated by an asterisk in the following equations.) There-
fore, all the equations of motion are in the form given in Equation (5-115). Then,

dfo agog (5-120a)
dt dr

dto _- _'9_o g (5-120b)
dt dr

where the partial derivative matrices are as follows:

m

-ox;/Oi ox;/O_, ox;/O

Oyo/OX Oyo/Oy Oyo/OZ

_.oz;/Oi oz;/O/, oz;/O__

g 0 0

0 g 0

_o o _

-x; _o

y!
.lit

Z0 Z0
m

B R
• 8

X0

*it

+ U Yo [/_ Y z]

.it

_ Zo.._

I( f s2i - 1) s_

(5-121a)

Y

O_,o/Oi Oio/O)' Oyo/OZ

+

-f

= 0

0

×; Xo

s .it

Yo Yo

i ,it

ZO ZO

0

f

0

E

o-

0

f

+U

I""-.. s--I

Xo I
!

Yfz.;J[_)_1;

sl + (f B 1)/ro

r;

-- f S 1

(f - 1) Sl

ro

(f - 1) se

(5-121b)

E::1
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The position and velocity are computed as follows:

g-- fr-o + gro (5-122a)

"_. • "_•

r = f_o+ gro (5-122b)

where

f= 1
_t S2

ro
(5-123a)

g = (t - to) - /_s3 (5-123b)

= ¢tSl

r r 0
(5-123c)

= 1 /_s2 (5-123d)

In the above formulas,/t is the gravitational constant and

ro = [(Xo) 2 + (yo) 2 + (Zo)211/2 (5-124a)

r = roSo + aoS_ + /_s2 (5-124b)

a* _D2 (a*)2 _)4 (a')3 _p6
So=l+ + +

2! 4! 6!
_t- o.° (5-124c)

a* _3 (a*)2 _05 (a,)3 _7
Sl = _'+ + +

3! 5! 7!
"l- ooo (5-124d)
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_2 a ° _4 (a')2 _6 (a')3 7)8

s2 2! + 4! + 6! + 8!
°°° (5-124e)

7)3 a" 7)5 (a.)2 7)7 (a.)3 7)9

s3 = 3! + 5! + 7! + 9! + "'"
(5-124 0

where the parameter 7) satisfies the following modified form of Kepler's equation:

t = to + rosl + O'oS2 + /2s3 (5-125)

The equation is solved for 7) using a Newton-Raphson iteration process. In this equation,

* ." (5-126a)... ;..= Xo Xo + Yo yo + z Zo

, @o) 2 (.,)2 (.,)2 2/2 (5-126b)a = + Yo + Zo r

The parameter U is evaluated as follows:

U = /2(7) s4 - 3s5) (5-127)

where

7)4 a* 7)6 (a*)2 7)8 (a*)3 7)10

s4 = _ + 6! + 8! + 10! + ... (5-128a)

7)5 a* 7)7 (a.)2 7)9 (a.)3 7)11
s5 = 5---_. + 7 ! + 9 ! + 11 ! + ... (5-128b)

The following accelerations at time to on the osculating trajectory are also used:

X0 =
/2 Xo

(ro)3
(5-129a)
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Yo
/_Yo

(ro)
(5-129b)

..m

ZO =
(r;) 3

(5-129c)

Initial conditions are specified by the values x0, Yo, z0,

a given reference time to. At time to,

Xo

S

Yo

ZO

Xo

**

Yo

"8

ZO

XO

Yo

Zo I

Xo I

Yo I

Zo I

Xo, Y'o, Zo of the coordinates at

(5-130)

5.8 NUMERICAL AVERAGING FORMULATIONS

The efficiency of numerical integration methods can be increased by eliminating short-

period effects (i.e., those with a period less than or equal to the satellite's period) from

the equations of motion. The Method of Averages uses this approach, wherein the equa-

tions of motion for an average element set are integrated. The resulting orbit generation

method is extremely efficient but is limited to average element accuracy rather than the

osculating element accuracy achieved in high-precision methods.

The averaging methods are particularly useful for orbit determination problems for which

the cost of precision orbit calculations is prohibitively expensive or where high accuracy is

not essential. Mission design, for example, is based on the consideration of both the

scientific objectives of the mission and the engineering constraints. Optimum mission

design usually requires a large number of orbit calculations to determine the characteris-

tics of the proposed orbits. An averaging orbit prediction process is well suited to the

preliminary stages of mission planning where long-term trends, not local fluctuations, are

of primary interest. The averaging methods can also be useful for differential correction

problems involving large quantities of data. The only assumption required for application
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of the averagingmethod is that the orbital elementsremain reasonablyconstant through-
out one period.

The averaging processcan be handled either analytically or numerically (Reference13).
The analytic method averagesthe effect of each perturbation (drag, oblateness,third-body
effects, etc.) separately.The resulting closed-form expressionsfor the averagedrates can
be used to construct a very efficient orbit generator. The numerical averagingtechnique
combines many of the advantagesof analytic averagingwith the ability to simulate the
effect of any small perturbations that can be deterministically modeled. Theseeffects are
included by averagingout the short-period oscillations in the perturbations by means of a
mechanical quadrature technique. By using the Gaussian form of the Variation of
Parametersequations in conjunction with the GTDS force model, the long-term effect of
any combination of perturbations can be computed. Consequently, the numerical tech-
nique is more flexible than the analytic method.

5.8.1 THE AVERAGED EQUATIONS OF MOTION

The averaging methods in GTDS use either the equinoctial or the Keplerian formulation

(Section 5.7) of the Variation of Parameters equations of motion. The precision Variation

of Parameters equations can be written in the form

- (5-131a)x = Ef(X, y)

_' = h(x-) + E g(X-, y) (5-131b)

where

x = vector of slow osculating or orbital elements

y = fast osculating orbital element (e.g., mean or eccentric anomaly)

E = a small parameter that is proportional to the perturbing acceleration

and f, g, and h are sufficiently smooth functions that are periodic in y with period 2"n'. The

averaged solution to these equations is defined by (Reference 14)

x-(t') dyA(t') (5-132a)
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I _ yA(t)+_r-- y(t') dyA(t') (5-132b)
yA(t) = 2Zt yA(t)--rt

Differentiating Equations (5-132) and substituting the results into Equations (5-131) yields

the averaged equations of motion

XA(t) e _ yA(t)+_r= -- f [x--(t'), y(t')] dyA(t') (5-133a)
2z_ y^(t)-rt

YA(t ) 1 f yA(t)+a"= -- {h[_-(t')] + E g[_'(t'), y(t')]} dyA(t')
2_r yA(t)-_r

(5-133b)

When _-A(t') and yA(t') are used in the evaluation of the arguments of the f, g, and h

functions, the standard first-order averaged equations of motion are obtained (Refer-

ence 15). In GTDS, the integrals in Equations (5-133) are evaluated numerically using a

Gaussian quadrature method.

5.8.2 NUMERICAL EVALUATION OF THE AVERAGED EQUATIONS OF

MOTION

Four different approximations are currently available for evaluation of the arguments of

the f, g, and h functions in Equations (5-133):

1. Traditional mean element behavior

_-(t') = X-A(t) (5-134a)

g(t') = yA(t') (5-134b)

2. Traditional mean element behavior plus mean long-period effects

_-(t') = _-A(t) + xA(t) [t'- t] (5-135a)

y(t') = yA(t') (5-135b)
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,

,

where XA is the averaged rate computed in the previous evaluation.

Traditional mean element behavior plus short-period effects arising from J2

x(t') = X-A(t) + A_-j 2

y(t') = ya(t') + AYJ2

The short-period corrections are obtained using Brouwer theory.

(5-136a)

(5-136b)

Traditional mean element, mean long-period and short-period effects

X-(t') = X-g(t) + XA(t) [t'-t] + A_-j 2 (5-137a)

y(t') = yA(t') + AYJ2 (5-137b)

Currently, only Equations (5-134) are available for evaluation of the argument in Equa-

tions (5-137).

5.8.3 AVERAGED EQUINOCTIAL VARIATION OF PARAMETERS

FORMULATION

The averaged equinoctial formulation (Section 5.7.2) uses a slow element vector

X- = (a, h, k, p, q) and a fast variable equal to the mean longitude, k. To uniformize the

integrand in Equations (5-133) and to reduce computational time, the integration variable

is transformed from the mean longitude to the eccentric longitude, F, using the relation-

ship

dFA
- (1 - k A cos F A - hA sin FA) -1 (5-138)

d2g

5.8.4 AVERAGED KEPLERIAN VARIATION OF PARAMETERS FORMULATION

The averaged Keplerian formulation uses a slow element vector x- = (a, e, i, if2, a_) and

a fast variable equal to the mean anomaly, M. All four methods outlined in Section 5.8.2

are available for evaluation of the equations of motion. When methods 3 and 4 are used,

the integration variable is transformed to the true anomaly, f, using the relationship

dfA _ a 2_- e 2 (5-139)

dUA r_

where rA is the magnitude of the position vector computed using the averaged elements.
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5.8.5 TRANSFORMATION FROM OSCULATING ORBITAL ELEMENTS TO

AVERAGED ELEMENTS

The accuracy of predictions obtained using the averaged orbit generator are improved if

initial average elements are used instead of osculating elements. In GTDS, this transfor-

mation is accomplished by solving the integral equation for the average semimajor axis

wJ

1 f t+TA/2 a(t') dt'
aA(t) = ,I=AJt_TA/2

(5-140)

using the following Newton-Raphson iterative procedure:

1 a(t') dt' (5-141a)
Fn = [aA(t)ln (TA)n

dFn
Dn - (5-141b)

d[aA(t)]n

[aA(t)]n+, = [aA(t)ln- .Fn (5-141c)
Dn

where

[aA(t)]0 = a osculating semimajor axis

and where TA, the average period, is

TA = 2zt a/ -:-" (5-142)

The average equinoctial element set is then computed by averaging the osculating ele-

ments over the average period, i.e.,

1
X-A(t) -

TA

r t+TA/2

x-(t') dt' (5-143a)

t-TA/2
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1 f t+TA/2
yA(t) = _ Jt-TA/2 y(t') dt'

(5-143b)

The average equinoctial elements are transformed to average position and velocity vec-

tors, Keplerian elements, and spherical coordinates.

5.9 BROUWER THEORY

GTDS includes two analytical solutions of satellite motion for a simplified disturbing

potential field limited to zonal harmonic coefficients for J2 through J5 (see Section 4.3).

Brouwer's first-order solution of this problem is obtained by applying the Von Zeipel

method in Delaunay canonical variables (Reference 1). The resulting solution contains

singularities for small inclinations and eccentricities and at a critical inclination of 63 de-

grees, 26 minutes.

It was shown in Reference 15 that the first-order Brouwer solution for secular and long-

period effects is identical to that obtained using first-order numerical averaging (Sec-

tion 5.8) with the same perturbing force model. Thus, Brouwer theory is equivalent to the

first-order averaging solution plus short-period effects for the J2 through J5 perturbing ac-

celeration. For applications that require more complete perturbation models, averaging

methods are more accurate than Brouwer theory.

Brouwer theory provides a rapid means of determining a satellite ephemeris. Its precision

is related to the error committed in omitting all perturbations except the low-order zonal

harmonics. The orbit from the Brouwer theory can also be used as an intermediate orbit

in the semianalytic techniques discussed in Section 5.11.

For applications that require high efficiency, it is important to consider the number of

output points required. For Brouwer theory, the computational cost is directly propor-

tional to the number of output points. However, when averaged numerical integration is

used, the cost is mainly dependent on the arc length instead of the number of intermedi-

ate output points. For differential correction applications, the computational cost of the

averaged orbit generation methods is often competitive with that of Brouwer theory and

offers considerably greater flexibility with respect to the perturbation model.

Computationally, the Brouwer solution is divided into secular, long-period, and short-

period terms. The solution consists of a secular motion, upon which is superimposed a

number of long-period terms. Superimposed on the sum of the secular and long-period

terms are a number of more rapid oscillations, or short-period terms. The periodic terms

of both long and short period are developed to order J2, while secular terms are devel-

oped to order (J2) 2. The harmonic coefficients J3, J4, and J5 are considered to be of

order (J2) 2 in the derivations.
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The Delaunay elements are related to the classical elements in the following way:

L = _ a) 1/2

G = L(1 - e2) a/2

H = G cos i

l = mean anomaly = M

g = argument of pericenter -- to

h = longitude of the ascending node =

However, the solution is written here in terms of classical elements (a, e, i, g, g, h) =

(a, e, i, M, to, Q). In the formulas that follow, double-primed variables refer to secular or

mean motion, single-primed variables refer to secular plus long-period terms, and un-

primed variables refer to secular plus long- and short-period terms. The unprimed vari-

ables are osculating elements.

Only the elements g, g, and h undergo secular motions. Mean elements at epoch are

denoted by a subscript 0 and the time elapsed from epoch by At. Mean elements are

usually obtained from osculating elements by the procedure outlined in Section 5.9.1. The

first-order solutions to the mean element equations of motion are

a" = ab' + Aa (5-144a)

e" = e_' + Ae (5-144b)

itt "11= lo + Ai (5-144c)

g" = no At + g At + g6' + Ag+ AgDRAG (0 --< g"< 2Zr) (5-144d)

g" = g At +g_' + Ag (0___ g" < 2_) (5-144e)

h" = la At +h_' + Ah (0 < h" < 2_) (5-144f)
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where Aa, Ae, Ai, At, Ag, and Ah are user-provided perturbations not accounted for in

the Brouwer-Lyddane model, and

19 3

A_DRAG=22Np,q(t-tq)P (5-145)

q=0 p=2

where Np,q are the Brouwer drag coefficients and tq is the reference time of the qth Np,q.

This model is based on the premise that drag is a minor component of the total perturba-

tion force.

The restricted perturbation model and first-order approximation, which are used in the

derivation of these equations, can lead to errors that increase with time. The element

rates of change are given by

({ 33 (302 1) + Y2 [25r12 + 16r/ - 15 + (30 - 96r/ - 90r] 2) 02= no, y'2 _ - 3_
(5-146)

+ (105 + 144r/ + 25r/2) 041 + _ 74 (e")2( 3 - 3002 + 3504)

({ 3,no 7'2 23 (502 - 1) + -_- 72 [25r/2 + 2477 - 35

-+ (90 - 192r/ - 126r/2)02 + (385 + 360r/ + 45r/2)04]_
J

5 )+ "_ Y4 [21 - 9r/2 + (126r/2 - 270) 02 + (385 - 189r/2) 04]

(5-147)

(7_( 3 ,= no _-72 [(9r] 2 + 12r/ - 5)0- (35 + 36r/ + 5*/2) 03]

)+ -_ _,40 (5- 3_2)(3- 70_3

(5-148)
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The following substitutionshave beenmadeto abbreviate the preceding expressions:

_//_ (5-149a)no = (a,,)3

r/ = _1 - (e") 2 (5-149b)

0 = cos i" (5-149c)

k2 = J2 R_ (5-149d)
2

k3 = - J3R_ (5-149e)

k4 = 3J4 t_ (5-1490
8

k5 = - J5 1_ (5-149g)

k2 (5-149h)
Y2 = (a,,)2

k3 (5-149i)
73 = (a,,)3

k4 (5-149j)
_'4- (a,,)4

k5

y5- (a,,)5 (5-149k)

, Y2
n = _ (5-149t)

q
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, Y3 (5-149m)
Y3- r/6

, Y4 (5-149n)
74 -- /18

, Y5 (5-149o)
Y5-

The secular terms depend only on the even zonal harmonic coefficients J2 and J4.

The mean value of the eccentric anomaly E" is obtained iteratively from Kepler's equa-

tion

E"- e" sin E" = [' (5-150)

The mean true anomaly f" and mean radial distance r" are given by

f" = tan -1 _/1 - (e") 2 sin E"]
¢¢ rtcos - e

(5-151a)

r" = a"(1 - e" cos E") (5-151b)

5.9.1 TRANSFORMATION FROM OSCULATING ORBITAL ELEMENTS TO

BROUWER MEAN ELEMENTS

The iterative algorithm used for converting osculating Keplerian elements to Brouwer

mean elements is described here (see References 16 and 17). This algorithm is useful in

two situations. Since Brouwer or Brouwer-Lyddane theories require Brouwer mean ele-

ments as an initial state, the first application consists of converting osculating elements to

mean elements for use with the Brouwer and Brouwer-Lyddane orbit generators. Sec-

ondly, osculating elements can be converted to Brouwer mean elements for reporting

purposes. Such mean elements are also useful as initial data for the integration of orbits

by the Method of Averaging and for other purposes.
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Singular points for zero eccentricity, zero inclination, and at inclination 63 degrees,

26 minutes, do not permit calculation of mean elements there. Only Keplerian elliptic

motion can be treated, which requires 0 _< e < 1.

The iterative process is executed according to the equation

X'l'(s÷l) = xl '(s) * [Yi- y[S)] (i -- 1, 2, ..., 6) (5-152)

where

X_'(s)

Yi

y[_)

= i th mean classical Keplerian element obtained from the s th iteration

= initial osculating Keplerian element

-- osculating Keplerian element estimated from the s th iteration

Double primes denote mean elements at the time of conversion. This algorithm ignores

correlations between the elements of the order of 10 -3 , which are of no practical impor-

tance in the calculations.

A convergence criteria limits the number of iterations. The sum of the squares of the

differences between the estimated and the initially given osculating elements are com-

pared with a prescribed tolerance. When the sum is less than the tolerance, the calcula-

tion is terminated.

The following method for obtaining the mean elements at a given time is more exact than

those methods that propagate the mean elements from some previous time using Equa-

tions (5-144) and (5-145), since the propagated mean elements deteriorate with time due

to perturbations not included in the solution. The values of the mean elements on

the s th iteration are used to compute estimates of the osculating elements. As shown by

Equation (5-152), the difference between the s th estimated value and the initial known

value of the osculating elements is used to correct the s _h estimate of the mean elements.

The starting approximation for the mean elements is the set of initially known osculating

elements.
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5.9.2 TRANSFORMATION FROM BROUWER MEAN ELEMENTS TO

OSCULATING KEPLERIAN ELEMENTS

The osculating elements include the secular, long-period, and short-period terms. The

osculating elements are expressed by

a( [ )a -- 1 + Y2 (- 1 + t. r'3 r/-3

+ 3(1-0 z) (a'')3 cos(2g' + 2f')]_
(r') 3 A3

(5-153)

r<,,>']e : e" +a,e + 2e" y_ (- 1+ 30_L.(r-.3--_,7-_

+3(1-o_ r-(a',:)_ y]-4} COS(2g' + 2"))
L (r) 3

- y'2(1 - 0 z) [3e" cos(2g' + f') + e" cos(2g' + 3f')])
J

(5-154)

,t,t 1 _'

i = I + 6ai + _ y20(1 - 02) 112 [3 cos(2g' + 2f')

3e" e"+ cos(2g' + f') + cos(2g' + 3f')]

(5-155)
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+ 61! .3( a }4e" Y'2 2(-1 + 302) r/2 + T- + 1 sinf'

(a") 2 r/2 a" ](r") 2 r' + 1 sin(2g' + f')

r/2 + T- + -3 sin(2g' + 3f')

(5-156)

.. r<o,:,:a" ]g = g + _lg + 4e" 72 2(-1 + 30 z) r/1 + + 1 sinf'L (r)2

+ 3(l_0Z){[ (a")z r/2 a" ]' (r') 2 r' + 1 sin(2g' + f')

a" ))+ r/2 + --_ + sin(2g' + 3f')

- # ,_1 ##

+ _72{6(-1 + 50 z)(f' - + e sin f')

3e II+ (3 - 502) [3 sin(2g' + 2f') + sin(2g' + f')

+ e" sin(2g' + 3f')]}

(5-157)

h = h"+Olh
t ?¢

2 72016(f' - #' + e sin f') - 3 sin(2g' + 2f')

- 3e" sin(2g' + f') - e" sin(2g' + 3f')]
(5-158)

v

5-50



where the long-period effects (denotedby dl) affect the elementse, i, l, g, and h, but not

the semimajor axis a, and are given by the following equations:

_8 t t t m
61e = 72 e r/2 [1 - 1102 4004 (1 - 502) -1]

1_ - 2g"5 )',4_ e" r/2 [1 - 302- 804(1 502) -1] COS
12 Y2

t

1 ' .,, 5 Y5 r/2 3(e")2]
+ Y___3r/2 sin i + -- --7 sin i"[4 +

Y2 64 Y2

X [1 - 902- 2404(1 - 502)-1]}sing ''

w

35 Y_ (e,,)2 r/2 sin i" [1 - 502 - 1604(1 - 502) -1 ] sin 3g"
384 Y2

(5-159)

(_1 i =
e"¢51 e

°tt

_2 tan 1

(5-160)

(51 _ = (1 '/2/,]3 [1 - 1102 - 4004 (1 - 502) -1]

}5 Y4 r/3 [1 - 302. 804(1 - 502)-11 sin 2g
12 Y2

t t

1 73 r/3 .,, 5 Y5 r/3
, ,, sin 1 , ,,

+ - 4 72 e 64 72 e
sin i"[4 + 9(e")21

x [1 - 902 - 2404(1 - 502)-1]} cos g"

+ t

384 Y2
r/3 e" sin i" [1 - 502 - 1604(1 - 502) -1] cos 3g"

(5-161)
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1t51g = -]-_ y'2{[2 + (e") 2] - 1112 + 3(e") 2] 02 - 40[2 + 5(e") 2] 04(1 - 502) -1

- 400 (e") 2 06(1 _ 502)-2} +
t

5 Y4 {2 + (e") 2- 3[2 + 3(e") 2] 02
24 Y2

- 8 [2 + 5(e") 2] 04(1 - 502) -1 - 80 (e") 2 06(1 - 502)-2}) sin 2g"

+ --7" " --,r - + ,
Y2_. e sm _r, 64 Y2

{(x r/2s_ 1
e e"O') e" }si---n _" I4 + 3(e") 2] + sin i"[26 + 9(e") 2]

x [1 - 902- 2404(1 - 502) -1 ] (5-162)

#

15 Y___5e" 02 sin i"[4 + 3(e")2][3 + 1602 (1 - 502) -1
32 Y2

+ 40 04(1 - 502)-21/

Fr

cos g +
l t

35 Y5 {e" sin i"[3 + 2(e") 2]
1152 Y2

"" 3 --2 _

(_.)._-[[1- 502- 160'(1- 502)-_]
sm _ j

+

t

35 Y5 (e,,)2 02 sin i"[5 + 3202(1 -
576 7'2 502) -a + 80 04(1 - 502)-2])cos 3g"
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1 ,61h = - _ y2(e") 20111 + 8002(1 - 502) -1 + 20004(1 - 502) -2 ]

s

5 Y4 (e,,)2 0 [3 + 1602(1 -
12 Y2

502) -1 + 4004(1 - 502)-2]} sin 2g"

{I-.... e"O+ Y3 e 0 5 Y5 , [4 + 3(e") 2] [1 902 2404(1 502) -1]
Y2 sin 1 64 Y2 sin I

+

I

15 y5 e"0 sin i"[4 + 3(e") 2] [3 + 1602(1 - 502) -1
32 Y2

(5-163)

1} "+ 4004(1 - 502) -2 cos g

I

35 YS, (e")3 0.,, [1 - 502- 1604(1 - 502) -1]
1152 Y2 sin i

, }_ - - 3g"35 y_ (e,,)3 0 sin i"[5 + 3202(1 502)-' + 8004(1 502) -2] cos
- -576 Y2

In these formulas, f' and r' are computed from

E' - e" sin E' = t' (5-164)

and

+ e"_l/2

tan(_) = ( 1 _-)tan(_-_') (5-165a)

" e" f'
a _ 1 + cos (5-165b)

r' 1 - (e") 2

or

r r

--_ sin f' = [1 - (e")2] 1/2 sin E' (5-166a)
a

r !

cos f' = cos E' - e" (5-166b)
tt

a
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r t

a" - 1 - e" cos E' (5-166c)

For the calculation of the coordinates at any time, the complete values of e and t should

be used for the solution of Kepler's equation

E - e sin E = t (5-167)

The conversion of osculating Keplerian elements to rectangular components of position

and velocity is discussed in Section 3.3.8.

5.10 BROUWER-LYDDANE THEORY

Lyddane modified Brouwer's formulation to obtain algorithms applicable for zero eccen-

tricity and zero inclination (Reference 18). He reformulated the orbital equations in terms

of Poincar6 variables rather than the Delaunay variables used by Brouwer. The solution,

carried out by the Von Zeipel method, accounts for up to fifth-order zonal harmonics of

the gravitational potential. The results are written here in classical elements rather

than Poincar6 elements.

The Brouwer formulas are suitable for the computation of the classical elements with one

exception. In computing short-period terms, Lyddane uses t" and g"instead of/' and g'.

Brouwer remarked that either is satisfactory, but in the Lyddane theory, t' and g' may be

ill defined. In addition, the relationships

(1/e") - r/-3 = r/-6 r/ + e + r/) -1

f" 3e" f" f"]+ 3 COS + COS2 + (e") 2 COS 3

(5-168a)

and

_-'_""-_/l_l_ l [e" f" 3e" f"(1/e") - r/-4 = r/-6 + 3 cos + cos 2 + (e") 2 cos 3 f"] (5-168b)
LkrJ d

are used in the computation of de to avoid roundoff problems, where

Equation (5-149b).

r/ is defined in
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5.10.1 TRANSFORMATION FROM OSCULATING ORBITAL ELEMENTS TO

BROUWER MEAN ELEMENTS

The mean motions due to secular terms are calculated by Equations (5-144) through

(5-148) of Section 5.9.

5.10.2 TRANSFORMATION FROM BROUWER MEAN ELEMENTS TO

OSCULATING KEPLERIAN ELEMENTS

The osculating elements are computed using Equations (5-169) through (5-185) (Refer-

ence 19). Since the periodic terms are somewhat lengthy, a number of substitutions have

been made in these equations.

Semimajor Axis

( eE e- r/+ 1 +r/a = a + 72 ( 302 1) _-g e"

+ (e") 2 cos 2 f") + 3(1 - 02) cos(2f" + 2g"

,, f,,+ cos f"(3 + 3e cos

(5-169)

Eccentricity

= (e" 6g) 2e x/(e" + 6e) 2 +
(5-170)

where

6e = 61 e --_- 7'2(1 - 02) [3 cos(2g" + f") + cos(3f" + 2g")]

1 f"- 372 --(1 - 02) cos(2g" + 2f") [3e" cos 2
r/6 (5-171)

f" f" e"]+ 3 cos + (e") 2 COS3 +

I el t
1 (302 - 1) e"

- YE_-K r/ + 1 + r/
+ cos 2 + 3 cos + (e") 2 cos 3 f"

/J
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rF tt

e"6t = B4 sin 2g" - B5 cosg + B6 cos 3g

1 r] 3 Y'2 (302 1) 2 __r._.j a f,,
- - - +--_ + 1 sin

4 r

a" 1 f")
,, + 1 sin(2g" +

r

_-rr) +--7rr + _ sin(3f" + 2g".

(5-172)

and

gtt tr r¢61 e = B13 cos + B14 sin g - B15 sin 3g (5-173)

Inclination

i = 2 sin-1 ([sin (2)6h]2 + [2 6i cos (2)+ sirl (2)2) 1/2 (5-174)

where

6i= 1 0y'e sin i"{e" cos(3f" + 2g")
2

+ 3[e" cos(2g" + f") + cos(2f" + 2g")]}

A2o (B7 cos 2g" + Bs sin g" - B 9 sin 3g")
r/2

(5-175)
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_- and

sin 6h = 1 . (Blo sin 2g" + Bal cos g" + B12 cos 3g"

2 cos (2)

k

1 , i" f" - £" f")72 0 sin {6(e" sin +
2

e tt- 3[ sin(2g" + 2f") + sin(2g" + f")]

- e" sin(3f" + 2g")})

(5-176)

Mean Anomaly _, Argument of Perigee g, and Right Ascension of Ascending Node h

e" 6g cos t" + (e" + 6e) sin _,_]t = tan -1 [_,,-+ fie) cos _- e'_6-t sin
(if e _ 0) (5-177)

I = 0 (if e = 0) (5-178)

h = tan-a I sin (2) 6h cOs h'' + sin h'I26i c°s(2)+. i" i" sin (2)1] '(if i _ 0)(5-179)
Lcos h"[2 6i cos (2)+ sm (2)]- sin (-_-)6h sin h"

h = 0 (if i = 0) (5-180)

g = (t + g + h) - ? - h
(5-181)
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where

(5-182)

1 ' {e" " )x 72 sin(3f" + 2g") + 3[sin(2g" + 2f") + e sin(2g" + f")]}

where

(g' + g' + h') = (g .... h") 3g" 2g ....+ g + + B3 cos + B1 sin + B2 cos g (5-183)

The quantity 0 is defined in Equation (5-149c). The following abbreviations are intro-
duced to shorten the written formulas:

, 1
AI -

(1 - 50 z) (5-184a)

1 , r/2 (1 1102 4004 A;)A1 = _-72 - - (5-184b)

t s

A2 = 302 + 804A1 (5-184c)

v
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t

5 9,4,rf(1 - A'2)
A2- 12 Y2

(5-184d)

p

A3 = Y___5[3(e,,)2 + 4]
Y2

(5-184e)

t

A4 = _y (1 - 3A2)
Y2

(5-184 0

As = A3(1 - 3A'2) (5-184g)

A6 =

s

1 73
t

4 Y2

(5-184h)

A7 = A6 r]2 sin i" (5-184i)

s

As - Yv5 (e") 2 (1 - 502. 1604A'1)
Y2

(5-184j)

°tt

A9 = _2 sin1 (5-184k)

Alo = 2 + (e") 2 (5-184t)

All = 3(e") 2 + 2 (5-184m)

A12 = All 0 2 (5-184n)

t

A13 = [5(e") 2 + 2] 04 A1 (5-184o)
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A14 = (e") 2 0 _(A'32 (5-184p)

Als = 02 A'I (5-184q)

A16 = A_5 (5-184r)

rr .t¢

A]7 = e sin1 (5-184s)

m18 =
hi7

l+r/
(5-1840

A19 = (1 + 0) sin f' (5-184u)

A2o = e"0 (5-184v)

so

A2] = e A2o

A22 = A2o tan (2)

(5-184w)

(5-184x)

A2 3 = /,]2 AI 7 (5-184y)

A24 = All + 2 (5-184z)

A25 = 16A15 + 40A16 + 3 (5-184aa)

1

A26 = _" A21(11 + 200A16 + 80A15) (5-184bb)
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and

IB1 = r/(A1 - A2) - _ (Alo - 400A14 - 40A13 - l lAx2)

1 A21(11 + 200A16 + 80A15 Y2+g
r

+ 2--_[ - 80A14 - 8A13 - 3Aa2 + 2A25A21 + Aao] Y,4Y2

(5-185a)

B2 = A6 Ala[2 + r/ - (e") z] + A5 Aa8 r/2 - 1__55A4 A17/,]3
64 32

(2)[5 ] '+ Azo tan As + A6 + -_- A4 A17 [9(e") z + 26]

15

32
-- A 3 A20 A25 sin i"(1 - (9)

(5-185b)

g 3 -
57672

e" sin i"(0 - 1)A21 [80A16 + 5 + 32A15]

35 As( (2) )1152 e" A21 tan + [2(e") 2 + 3(1 - r/3)] sin i"

(5-185c)

B4 = r]e" (Aa - A2)
(5-_85d)

B5 = r/{6- _ A4A919(e")2 + 4)] + A7}
(5-185e)

5 .tt

B 6 - )13 A8 sin 1
384

(5- 85f)

B7 = _2 A,->, A'I [1 y2(1 - 1502) ' ]5 74 (1 - 702)
12 _"2

(5-185g)
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B8 = 6-'45A3 r/2(1 - 902 - 2404 A'I) + r/2 A6 (5-185h)

35
r/2 A8 (5-185i)B9 = 384

[:,' ]Blo = sin i" • Y4 A21 A25 - A26 Y'2 (5-185j)
?2

[6-_ 15 A3 A25 sin 2 i"]Bll = A21 As + A6 + 3"-2- (5-185k)

[ (¢:6 ) ]35
B12 = - (80Aa6 + 32A15 + 5) )'5 e" sin 2 i" A21 + --Aa A2o (5-185l)

7'2 1152

e SsB13 -- (A1 - A2) (5-185m)

5 A5 r/2 sin i" + A7 (5-185n)
B14 = 6---4

35 Aa r/2 sin i" (5-185o)
B15 = 38----4

The mean value of the eccentric anomaly E" is obtained iteratively from Kepler's equa-
tion

E .... E"=l"- e sin (5-186)

The mean true anomaly f", the mean radial distance r", and the ratio of the mean semi-

major axis and the mean radial distance are given by

tan-1 E" n, (5-187)cos - e
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r" = a"(1 - e" cos E") (5-188)

a" 1
""77- = r, tt

r (1 - e cos E )
(5-189)

5.11 INTERMEDIATE ORBIT

The Intermediate Orbit methods used in GTDS (Reference 20) are semianalytic methods

which combine analytic theory and numerical integration. The solution to a simpler prob-

lem obtained by means of an analytic theory is used as a reference solution, and the

difference is the time rate of change between the true solution and this reference solution

is integrated to obtain the true solution. Either a Variation of Parameters or an Encke

approach can be used in the development of these methods. Using Intermediate Orbit

methods causes the quantities on the right-hand side of the resulting differential equations

to vary slowly and smoothly with time, making them more amenable to numerical integra-

tion methods (i.e., more numerically stable) than the original differential equations.

Intermediate Orbit methods can be developed for any analytical theory; however, only two

intermediate orbits have been considered for implementation in GTDS. The first is an

orbit in which short-period effects due to J2 have been eliminated using the Brouwer

theory. The second is the orbit resulting from J2 perturbations using the complete

Brouwer theory for secular, long-period, and short-period perturbations. The equations of

motion are better conditioned for numerical integration when they are smoothed by re-

moval of fast varying short-period J2 effects or when made slower and smoother varying

by using the complete Brouwer theory to remove secular, long-period, and short-period

perturbations arising from J2. Orbits of small eccentricity and low inclination can be

considered by an option that uses the same intermediate orbits as above but which are

expressed in Poincar_ rather than Delaunay variables.

Efficient numerical integration is achieved through minimizing local error by an appropri-

ate choice of a uniformization constant, n. This involves selection of a new independent

variable, s, related to the time t by

as- _ dt (5-190)
r n
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where

r = magnitude of the satellite's position vector

/_ = gravitational constant

n = uniformization constant

To a considerable extent, the optimum choice of n depends on the dominant perturbation

affecting the orbit under consideration. Thus, for the Intermediate Orbit method based on

short-period J2 perturbations, the main portion of J2 must be modeled, leading to a

choice of n = 2. However, the Intermediate Orbit method using the full Brouwer theory

may still require a selection of n = 2 (or higher for a_n elliptic orbit) if the orbit is signifi-

cantly perturbed by drag. If the intermediate orbit is out of the high-drag region, then the

choice of n depends upon the ellipticity of the orbit and whether or not third-body pertur-

bations are significant.

GTDS's full Brouwer intermediary is an osculating Keplerian orbit that changes due to J2,

the coefficient of the second zonal harmonic. Perturbations due to J2 dominate those

caused by other gravitational harmonics, third bodies, drag, etc., for many close-Earth

satellites. While other secular perturbations eventually cause the intermediate and true

orbit to become widely separated, the GTDS intermediary stays near the true orbit much

longer than the two-body solution.

5.12 VINTI THEORY

Vinti theory is a General Perturbation Method. In an approach similar to that of Brouwer,

the dependent variable set is chosen such that the HamiltonJacobi equations of motion

are separable. Of the 11 coordinate systems that have this property, oblate spheroidal

coordinates O, r/, 0 are chosen since they are most appropriate for describing motion

about an oblate Earth. These coordinates are related to the rectangular position coordi-

nates as follows:

x + iy = (0 2 + c 2) (1 - T]2) 1/2 e io (5-191a)

z = O r/ (5-191b)
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where

(1 )c 2 = R 2 J2 1 - _- _ J2 3
(5-192a)

i = _ (5-192b)

and

Re = mean equatorial radius of the Earth

J2, J3 = coefficients of the zonal harmonics (see Section 4.3.1)

On the other hand, Brouwer theory was developed in terms of elliptic coordinates, which

are most appropriate for describing motion about a point-mass body.

Vinti obtains an analytic solution for perturbed satellite motion arising from a potential of

the form

V = -lu(O z + c zrl2) -_(0 + rid) (5-193)

where

d = _11% J21 J3 (5-194)
2

The above potential leads to a fit of the gravitational potential

V= # n--- - Jn Pn(sin 0 (5-195)
r

n=2

exactly for the second zonal harmonic and about two-thirds of the fourth zonal harmonic.

The resulting solution gives the periodic terms correctly to order J_ and the secular terms

for the intermediate orbit to arbitrarily high order. The mathematical details are given in
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Reference21. This method for treating the effects of J3 eliminates singularities for small

eccentricities and for small or 180-degree inclinations, which usually occur in perturbation

theories. Thus, Vinti theory is particularly appropriate for computation of polar and circu-

lar equatorial orbits.
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CHAFFER 6--NUMERICAL INTEGRATION OF

THE EQUATIONS OF MOTION AND
VARIATIONAL EQUATIONS

This chapter describes the St6rmer-Cowell/Adams integration processes available in

GTDS for the integration of the Cowell and various VOP (Chapter 5) formulations of the

equations of motion. These processes were selected on the basis of several efficiency

studies (References 1 and 2) comparing various classes of popular integration algorithms

as applied to special perturbation techniques. This chapter also describes several single-

step Runge-Kutta integration methods, which are used in GTDS for reentry predictions

and as a starter for certain multistep processes.

6.1 MULTISTEP NUMERICAL INTEGRATION METHODS

Multistep methods of the type described below were found to minimize the number of

derivative evaluations required to produce a given accuracy at the end of the requested

interval of integration. Since, in general, the major cost in computing an orbit is the

evaluation of the complex force function (Chapter 4), this implies that multistep algo-

rithms are most efficient.

Within the class of multistep methods, options such as the following must still be selected:

. Type of Formulation--Methods can be used that solve second-order systems

directly (Class I1), such as St6rmer's method; or that normalize the second-

order system into a higher dimensional first-order system and use a Class I

formula, such as Adams-Bashforth.

. Type of Algorithm--Several algorithms can be selected within the multistep

predictor-corrector schemes, ranging from PE (prediction only) to P(EC) n,

PE(CE) n, and PECE*, where P -- predict, E ---evaluate derivative, C -- correct,

and E* = pseudoevaluate, i.e., correct or recorrect only part of the total deriva-

tive.

. Order or Process--Various order formulas can be selected to use in the algo-

rithm, recognizing the fact that higher order formulas are more accurate but

less stable.

. Stepsize Control--Since the orbit dynamics can undergo large variations during

a revolution (e.g., high-eccentricity orbits), an algorithm must be selected to

allow stepsize variations. This can be done either by numerical monitoring of

local errors or by analytic transformations of the independent variable (time

regularization).
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Most of the above-mentioneddegreesof freedom are available in GTDS and have been
studied for various problems (References3 and 4). Somegeneralconclusionsreachedare
as follows:

. For formulations involving second-order equations, Class II integrators should

be used to solve the system directly, utilizing a Class I method to obtain first

derivatives if required.

2. The highest possible order formula, subject only to the constraints of numerical

stability, should be used.

3. Pseudoevaluate algorithms significantly increase the stability regions of

predictor-corrector schemes at little or no cost in efficiency.

. Efficiency dictates the use of stepsize control for moderate-and high-

eccentricity orbits. Analytic stepsize control is more efficient and reliable than

numerical stepsize control.

. The choice of the best integrator and independent variable is highly dependent

on the choice of formulation of the equations of motion. Formulation character-

istics such as the regularity, or smoothness, of the dependent variables and

dynamic stability influence parameters such as the numerical stability regions,

choice of order, etc. As new formulations are introduced, careful matching of

appropriate numerical schemes is required.

In the following sections, the multistep methods based on Newton's interpolating polyno-

mial are derived and the basic algorithms for iteration, starting, interpolation, and step-

size control are discussed.

6.1.1 ADAMS-COWELL ORDINATE SECOND SUM FORMULAS

The formulas for the integration and interpolation of the equations of motion and the

variational equations are basically of the Newtonian type derivable from standard differ-

ence operator techniques. For the integration, these formulas define the well-known

predictor-corrector Adams method for first-order equations and the Cowell method for

second-order systems. Formulas of the same class can be used to perform the required

interpolations to determine values not given in the integration process and to form the

starting set of solution values required by the predictor-corrector process.

In the following discussion, an outline of the derivations of the required formulas is given.

In addition, a detailed description of the computational algorithms necessary to perform

the integration is presented.
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The quantities s and h denotereal numbers, and the linear operators V, Es,D, and I are
defined as

I Backward 1V f(t) = f(t) - f(t - h) Difference (6-1)
Operator

E s f(t) = f(t + sh) Shifting "[OperatorJ (6-2)

d [ Differentiation] (6-3)D f(t) = f(t) = f (t) Operator J

Identity 1 (6-4)I f(t) = f(t) OperatorJ

Two well-known relations among these operators are

E_ = (I- V) -_ (6-5a)

and

h D = -ln(I - V) (6-5b)

Utilizing Equations (6-5), the following operator identities can be derived:

ES= h [_(_n_ii _)_)] D (6-6a)

ES = h 2 [-(I- V) -s .]D2 (6-6b)
[_{ln(I- V)}2..]
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Expanding the bracketed terms in a V series yields

E s = h -a + Yi+_ s D

i=O

(6-7)

" SE _ = h 2 -2 + (s - 1)V -1 + Yi+2() D 2

i=o

(6-8)

where yi(s) and yi'(s) are given by the following recursive formulas in s (see Refer-

ence 5):

to(S) = y'o(s)= n'(s) = 1 (6-9)

i

r;(s) = E r](o)r_-j(s)
j=O

(i = O, 1, 2, ..., k) (6-10)

i

r_'(_)= E r_'(o)r_-j(s)
j=O

(i = O, 1, 2, ... k) (6-11)

where

y,(s) =
s+i-1

i I

ri-_(s) (6-12)

and

i-1

j=O

1 _j(O)
i-j+1

(6-13)
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yi'(0) = 2 yj(0) yl-j(0) (6-14)

j=0

Applying the operators in Equations (6-7) and (6-8) to the functions _ (t) and x(t), respec-

tively, and truncating after k terms, gives

(t + sh) = h -1 g(t) + yi+a(s) V t x (6-15)

i=0

= - " "S" V ix(t + sh) h 2 -2 :_(t) + (s 1) V -1 g(t) + Yi,2() x(

i=O

(6-16)

The quantities W 1 g(t) and W z x(t) are called the first and second sums of :_(t) and

satisfy the relationships

V-aJ{(t) - V -15_(t - h) = 5((0 (6-17)

and

V -2 :_(t) - 7 -2 _(t - h) = V -1 :_(t) (6-18)

By varying the value for s, Equations (6-15) and (6-16) define the Adams-Cowell predic-

tor-corrector formulas, as well as the Newtonian interpolation and starting formulas. For

example, the Adams-Cowell predictor formulas are obtained by setting s = 1 and

Xn = X(tn) = x(t0 + n h)to give

Xn+l = h -1 5_n + yi+l(1) V i (6-19)

i=0
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and

Xn+ 1
= " "1" V ih 2 -2 _(n + Yi+2( )

t=O

(6-20)

The preceding equations can be expressed in ordinate form as

Xn+l = h n + fli :_n (6-21)

i=O

Xn+l = h 2 6-22)n + ai Xn

i--O

where

ISn = V-1 )(n (6-23)

IISn = V-2 Xn (6-24)

r Ft

The coefficients a_ and fli can be expressed as functions of y_ and Yi from the recursive

relations given by Equations (6-9) through (6-14); for example,

k

ai = (-1)i Z(7) Ym+2(1 ) (i = 0, 1, 2, ...k)

m=i

(6-25)

The Adams-Cowell corrector formulas are obtained from Equations (6-15) and (6-16) by

setting s = 0 and t = tn+l, yielding

Xn+l = h n + Xn+l (6-26)

i=0
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and

f £ t' (6-27)Xn+ 1 = h 2 Sn + ai Xn+l

i=o

where a; and fl; are computed analogously to ai and fli but using 71'(0) and 71(0). The

quantities fli and fll are called the summed ordinate Adams-Moulton predictor-corrector

coefficients, and ai and a_ are the corresponding St6rmer-Cowell coefficients. These

coefficients are tabulated in rational form in Reference 5 for formulas of order 4 through

15.

6.1.2 PREDICT-PSEUDOCORRECT ALGORITHM FOR THE EQUATIONS OF

MOTION

The concept of pseudoevaluation is introduced as a device that helps stabilize the numeri-

cal integration at little or no cost in computation. In a predictor-corrector scheme, the

numerical stability region is proportional to the number of derivative evaluations within a

given step (Reference 6). For systems of the form

= f(x) + e g(x) (6-28)

where • is a small parameter, the stability region is mainly influenced by the f(x) term.

The idea, then, is to introduce into a predictor-corrector algorithm designed to solve the

above system a pseudoevaluation, i.e., a partial evaluation of x, where f(x) is recomputed

using the latest corrected value of x and g(x) is reused based on a previous value of x.

For example, if the equations to be integrated have the form

D

- R3 + P(t, R, _ (6-29)

where the first term represents the primary attracting body acting on the satellite, the

perturbing acceleration P(t, R, R--) is comparatively small, and given the accelerations

_,-(tn-i) and the sums

ISn = V-1 _'n (i = 0, 1, 2, ... k) (6-30a)

IISn = V-2 _-n (i = 0, 1, 2, ... k) (6-30b)
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then the iterative algorithm to advance to time tn+l is as follows:

1. Predict. Using Equations (6-21) and (6-22), predict values (denoted by super-

script p)

Iv(P) v(P) '-/(P) ] (6-31a)R(P) (tn+l) = I."-n+l, -n+l, "-_n+H

r<.<,,+<,,ill+ 1 , (6-31b)

2. Evaluate. Using Equation (6-29), evaluate

_(tn+l) = -/2 R(nP+) [ b-(P) _-(nP+) ] (6-32)_(p)3 + p tn+l, XXn+l,
XXn+ 1

.

,

Correct. Using Equations (6-26) and (6-27) obtain the improved values (de-

noted by the superscript c) _1 and _]a.

Test. Compare the magnitude of the vector [R-(P)(tn+l) - R(O9(t,,÷l)] against a

prescribed tolerance. If this quantity is sufficiently small, proceed to step 5;

otherwise, replace the values R-(P) and RCp) with _-(c_ and g(c) and repeat

steps 2 through 4.

5. Pseudocorr¢¢t. Compute the acceleration

_(tn+l) - -/_ _(_1 [ °--(P) _nP+)l]o(c) 3 + P tn+l, XXn+l,
XXn+ 1

(6-33)

.

where the P term is obtained from step 2.

Update Sums. Compute the updated sums

ISn+l = ISn + _'(tn+l) (6-34)

llZn+ 1 = IlSn + ISn+ 1 (6-35)
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The computational cycle (steps 1 through 6) can then be repeatedwith n -- n + 1.

In n-body or Earth-Moon trajectory computations, the equations of motion will frequently
be independent of the velocity term, _; i.e., the acceleration is of the form

-/zR (6-36)
_ R3 + P(t,

For trajectory segmentspossessingthis characteristic, the preceding computational cycle
can be simplified: in step 1, the predicted _-(P)need not be computed; and in step 3, the
provisional corrected values _(c/are not required. After the test in step 4 is satisfied, _(c/
can be obtained by one application of the corrector formula in Equation (6-26).

For the caseof the integration of VOP type formulations, the conceptof pseudoevaluation
should be extendedto include the major perturbation beyond the central force, in particu-
lar, J2 for near-Earth satellites. This is due to the fact that in these formulations the
stability is governedby the principal perturbations. The central force contribution is ana-
lytically integrated and, hence, does not influence numerical stability.

6.1.3 CORRECTOR-ONLY COWELL INTEGRATION FOR LINEAR SYSTEMS

From the Adams-Cowell corrector equations, the following closed-form equations can be

derived when the equation being integrated is linear:

Yn*l h2f_S 2 _ t
= n + t2 _/n+l

i=0

(6-37)

hEsn £  ynlt
i=O

(6-38)

Such a linear equation is

y = a(t) y + b(t) y + f(t)
(6-39)

where a(t), b(t), and f(t) are known time-varying functions.
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Equations (6-37) and (6-38) can be written as

f £ )Yn+l = h 2 S_ + ao Yn+l + a_ Y.+I

i=l

(6-40)

and

Es z tYn+l = h n + floYn+l + fl;Yn+l

i=1

(6-41)

By expanding the derivative Yn+_, the following are obtained:

Yn+l = h2flSn
+ ao an+l Yn+l + a0 bn+l Yn+l + ao fn*l + kE a; Y,,+l

i=1

(6-42)

)'n+l = h ISn + flo an+, Yn+, + ,8o bn+, Yn+l + flO fn+l

k

+Z
i=l

(6-43)

Defining the known quantities

Xn = h 2E 2Sn +aofn+l +

i=l

(6-44)

v. = hfSn
+ flO fn+l +

k

2
i=l

fl; Yn+l t
(6-45)

6-10



and the matrix

H h ao an+l

h a.,l

h ao bn (6-46)

then Equations (6-42) and (6-43) can be written as

Yn+I I [__n+l I

(6-47)

The solution to Equation (6-47) is

(6-48)

It should be noted that the inverse in the preceding equation will always exist if h is

sufficiently small. The inverse depends only on the coefficients a and b and need be

computed only once when solving equations of the form of Equation (6-39) with different

nonhomogeneous terms f(t).

6.1.4 CORRECTOR-ONLY ALGORITHM FOR VARIATIONAL EQUATIONS

In the Cowell formulation, the position and velocity partial derivatives of the satellite

motion with respect to any parameter appearing in the acceleration model in Equa-

tion (6-29) or state (dynamic parameters) can be obtained by the numerical integration of

the variational equations

= A(t)Y + B(t) _' + C(t) (6-49)
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from initial conditions at to given by

V(to)- 0R(to) (6-50a)
off

5' (to) = 0_(to) (6-50b)
af

where

A(t) = I-_[Og(b[ (6-51)
I 0R_J 3x3

B(t) = fOR-(t)] (6-52)
Lo /3x3

C(t)= F °g(t)-] ['3 X ' matrix of s/ (6-53)L ag_l \acceleration partial derivative

Y(t)= f0R(t)--] f3 x..t matrix of (6-54)
L af_J \posmon partial derivative 7

and

_'(t) = [0_-_ (3 X ' matrixof s) (6-55)
L_ all \velocity partial derivative

The vector _ contains the parameters in the acceleration model that are being estimated.

The components of the matrices A, B, and C were developed in Chapter 4.

Optionally, the components of f correspond to the spacecraft's position and velocity at

epoch and can be expressed in mean of B1950.0 or J2000.0 Cartesian coordinates, true of

date Cartesian coordinates, classical Keplerian orbital elements, spherical coordinates, or

DODS variables. The initial conditions for the variational equations, Equation (6-49), are
v
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2._

dependent upon the coordinate systems selected. The partial derivatives of R and R with

respect to Keplerian elements and spherical coordinates can be obtained from Sec-

tions 3.3.8 and 3.3.4, respectively. Since the first six elements of _ are the state vector,

the first six columns of C are zero. Most model parameters such as thrust, drag, har-

monic coefficients, etc., enter into P(t, R, R---)of Equation (6-29) linearly, so that the

computation of C(t) can be simplified by retaining many of the quantities used in the

computation of _-(t).

The integration of system Equation (6-49) can be performed by the utilization of the

corrector-only formula Equation (6-48) as described below.

Assuming that the satellite position and velocity, R(tn-i) and _(tn-i), the matrices Yn+l-i

(i = 1, 2, ... k), and the summation matrices Ipn and IIpn (3 x t) are known, then the

algorithm to advance Y to time tn+l is as follows:

. Compute the matrices A(tn+l), B(tn+l), and C(tn+l), which depend only on
".2.-

tn+l, R-'n,l, and Rn+l.

2. Compute the 6 x 6 matrix [I - H] -1, where

= _2 ao An+l

H L h/_° An+'

h a a0 Bn+_

h/_o Bn+_

(6-56)

and a_ and/5_' are the corrector coefficients of Equations (6-26) and (6-27) and

h is the stepsize.

3. Form the 3 x t matrices, Xn and Vn, as

Xn f 2= h a Ip_ +

i=l

(6-57)

v..,E,.+ +,o,,+1
i=l

(6-58)
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. Compute the required position and velocity partial derivatives, Yn+l and _'n÷l,

by the matrix equation

lyo.I ii- ' (6.>

5. Complete the cycle by updating the acceleration partial derivatives and sums by

"Yn+l = An+l Yn+l + Bn÷l XLn÷l + Cn+l (6-60)

Ipn+l = Ipn + Yn+l (6-61)

llpn+l = IIpn + Ipn+l (6-62)

After R-n+2 and _'n+2 are computed, steps 1 through 5 can be repeated with n = n + 1.

For cases where the perturbing acceleration P in Equation (6-29) is independent of the

velocity, the matrix B in Equation (6-49) is zero, so that the variational equations reduce
to

_/" --- A(t)V + C(t) (6-63)

As in the case of the equations of motion, the computational algorithm can then be sim-

plified. Specifically, in step 1 only the matrices A and C are required, and in step 2 the
matrix H becomes the 3 x 3 matrix

H = h 2 a0 A_+I (6-64)

The required partial derivatives are then given by

Yn+l = [I - H] -1 Xn (6-65)

_lZn+1 = h flo An+l Y_+I + Vn (6-66)
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The order and stepsizeused in the integration of the variational equationscandiffer from
that used in the integration of the equations of motion without any significant difficulty.

6.1.5 MULTISTEP INTERPOLATION

The multistep interpolator uses the first and second ordinate sums and the backpoints

(accelerations) computed during multistep integration to compute the spacecraft position

and velocity and the associated partial derivatives (if desired) at a request time.

For the most efficient use of the multistep integration techniques, the values at the re-

quest time, t, of the integrated position and velocity of the variational equations are pro-

duced by interpolation from the stored accelerations (backpoints) and the first and second

ordinate sums. When the time-regularized equations of motion (Section 5.3) are inte-

grated, an additional interpolation is required to determine the time-regularized independ-

ent variable, s, at the request time.

6.1.5.1 Multistep Interpolation With Fixed-Step Integration

The general summed form of the Adams predictor/corrector equation at a point (t + sh) is

, i g(t - j (6-67)
£(t + sh) = h . + (-1) j yi+,(s) j

j=0 i=j

and the Cowell predictor/corrector at (t + sh) is

x(t + sh) f £ £= h 2 S n d- (s - 1)IS n "t- (--1) j

j=0 i=j

,, (i)x,t_  t,6_6s,_'i+2(S) j

where

S

S

-1 <

1 and t = tn for the Adams-Bashforth and Stormer-Cowell predictor

equations (Equations (6-21) and (6-22))

0 and t = tn+l for the Adams-Moulton and Cowell corrector equations

(Equations (6-26) and (6-27))

s < 0 and t = tn for interpolation
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The quantities y'(s) and y"(s) are parameters used in computing the coefficients of :_.

When s is equal to 0 or 1 and the order of the integration method has been chosen, then

the coefficients of the accelerations (g) can be precomputed. When interpolation is being

performed, however, the coefficients must be recomputed for each requested time, tr,

where

S - tn
tr = (6-69)

h

The multistep interpolation algorithm is as follows:

1. Compute constants y_ (0) and y_' (0), to be utilized in later calculations, using

Equations (6-13) and (6-14) with

y'o(O) = 1 (6-70)

for i = 1, 2, ..., k, where

.

k+l = order of Adams Class I integrator

k+2 = order of Cowell Class 11 integrator

Let s -
t-t_

h
in the following steps, where

tn = time associated with the most recent entry in the backpoints

table, Xn

t = request time

h = step size

3. Compute Yi (S) (where i = 0, 1, ..., k+2) using Equations (6-9) and (6-12).

4. Compute Y' (s) (where i --- 0, 1, ..., k+l) using Equations (6-9) and (6-10).

5. Compute 6' (s) (where i -- 0, 1, ..., k)

k+l

do(S) = _ yi(s) (6-71)

j=l
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(s) +
"+' y_(st

j=i+2

(6-72)

The quantity (7) is computed as

m{

(m- i)! i! ' and

r

,_;,(s)= rk+,(s) (6-73)

In the above expressions, i = 1, 2, ..., k-1.

6. Compute the velocity as follows:

(t) = £(tn + sh) = h Sn + (_i(s) Xn

i=0

(6-74)

where

ISn = first ordinate sums

:_ = accelerations in the backpoints table

n = number of accelerations in the backpoints table

and s, h, and 6_(s) have been defined previously.

7. Compute Y"(s) (where i = 0, 1, ..., k+2) using Equations (6-9) and (6-11).

8. Compute 61'(s) (where i = 0, 1, ..., k)

12

e_'(s) = E r;'(s)
i=2

(6-75)
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,_;'(s)-- (- 1)_
' (s)
+1 +

k+2

2(':
j =i+3

(6-76)

where i = 1, 2, ..., k-l, and

" S,_'(s) = n+:( ) (6-77)

9. Compute the position

x(t) = X(tn + sh) = h 2 E z JIs n + (S - 1)Is n + 6;'(S) Xn-1

i=0

(6-78)

where

ISn and lls n

n

= first and second ordinate sums

= accelerations in the backpoints table

= number of accelerations in the backpoints table

and s, h, and 6;'(s) have been defined previously.

6.1.5.2 Multistep Interpolation With Time-Regularized Integration

When the integration is performed with regularized time as the independent variable, an

additional interpolation is required to determine the value of the independent variable, s,,

that corresponds to the requested time, tr. Reference 7 discusses the precision of the

interpolation when precomputed files of the accelerations and first and second sums are
used.

When first and second sums are available for each backpoint (i.e., during the integration),

a technique similar to that described for the fixed-step integration, but requiring addi-

tional steps for convergence of Sr, is used. If the sums are not available at each step (such

as when accelerations are retrieved from precomputed data files), then this technique is

not sufficiently precise (see Reference 7).
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6.1.6 THE STARTING PROCEDURE

Two starting procedures are available in GTDS, an iterative method and a Runge-Kutta

method. The iterative starter is generally used; however, the Runge-Kutta method can

optionally be used as a starter for multistep integration methods.

6.1.6.1 Iterative Starter

The starting arrays R--'n_i, _/'n-i (i = 0, 1, 2, ... k) and the associated first and second sums

required by the integration process can be computed by an iterative procedure based on

Equations (6-15) and (6-16) using varying values for s. If m-- [(k + 1)/2], where the

brackets indicate the greatest integer function, and Ro, Ro, and _ are the given initial

values at t = to.of Equation (6-29) (the process is analogous for Equation (6-49)), then

the values R-], R-i, and Ri (i = + 1, + 2, + m) can be computed by succes-

sive approximations, yielding the required starting values.

Let 61(s) and 61'(s) be the coefficients of the ordinate forms of Equations (6-15) and

(6-16), with k = 2m; then,

X(tn + sh) = h _ + tSi(s) :_n

i=O

(6-79)

x(tn + sh)= h2flSn + (s- 1) IS,_ + Z 61'(s):_n t
i=0

If _0) denotes the jth approximation, the (j + 1) st

ing procedure:

1. Compute the sums Isn and USn using

2m

tSm - _Oh E d_(- m) R-Om__l

i=0

(6-80)

approximation is given by the follow-

(6-81)

2m

ZilSm to 1) Is m _i'(- m) _)--1
- h2 + (m +

i=O

(6-82)
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, Compute the corrected position and velocity vectors using Equations (6-80) and

(6-79), with n = m and s = (i - m), as follows:

_ii *1) = h 2 Sm + (i - m - 1)ISm +

/=0

(6-83)

_+1) = h m + 6_,(i- m) (6-84)

/=0

where i = 4- 1, 4- 2, ... 4- m

. the acceleration, _j'+l), using the force model. This completes theCompute

iteration.

Steps 1 through 3 are repeated until the successive values of Ri and _i converge.

As in the process described in Section 6.2, if the accelerations are velocity free, simplifi-

cations in the computational algorithm can be made. Specifically, in step 2 the computa-

tion of _--Oj'+l)can be omitted until convergence on the positions R_.

The first approximation (j -- 1) can be obtained by a variety of methods. Near a primary,

two-body analysis can be used effectively, either in the form of orbital elements or f and

g series. Between two primaries, either a single-step, low-order method or a prestored

ephemeris should be used.

6.1.6.2 Runge-Kutta Starter

The multistep methods avoid the multiple function evaluations at each integration step

that are characteristic of the Runge-Kutta method, but they are not self-starting. Starting

from an initial position and velocity, the Runge-Kutta method presented in Section 6.2.1

can be used to build the required starting array for the Cowell and Time Regularized

Cowell equations of motion and variational equations.

6.1.7 LOCAL ERROR CONTROL

Local error control for the multistep integrator can be performed by changing the integra-

tion stepsize to minimize the local truncation error. The stepsizes can be set by distance
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from the central body or can be changed on a step-by-step basis to minimize a function

approximating the local error. Since each change of the stepsize requires rebuilding the

difference tables, a variation is to change the step only by halving or doubling. For highly

eccentric orbits, these controls may not be sufficient. In those cases, use of time

regularization (described in Section 6.4) is more satisfactory.

For automatic control of the error, stepsizes are selected based on the magnitude of the

local error, en, computed on a step-by-step basis by the Milne formula

C I .np) - (6-85)
=

where C is a constant depending on the order of Equations (6-22) and (6-27). The vec-

tors _P) and _(_) are the predicted and finally accepted position vectors, respectively,

computed at time t = tn. The stepsizes are selected so that £n at each step satisfies the

constraint equation

T2 -< ¢n -< T1 (6-86)

where T1 and T2 are specified upper and lower bounds on the local error.

The variable stepsize integration algorithm is as follows. At each step n, the test in Equa-

tion (6-86) is performed. Depending on the result of this test, one of the three following

cases applies:

1. ¢n >T1

The stepsize is decreased, and the nth computed point is rejected and recom-

puted with the new stepsize, where the required back values are obtained by

interpolation.

2. En > T2

The stepsize is increased, the nth computed point is accepted, and the integra-

tion proceeds with the new stepsize, where the required back values are ob-

tained by using every other point from a saved array of points if hnew = 2h or

by interpolation if h < hnew < 2h. A maximum increase of 2h is allowed.

3. en satisfies Equation (6-95) (given in Section 6.2)

The integration proceeds uninterrupted.
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In either case 1 or 2, h,ew is computed by the formula

hne.= h _T31'/k (6-87)
L E.j

where T3 is a specified allowable local error satisfying T2 < T3 <--- T1.

When stepsizes are specified as a function of radial distances from the primary, the

required stepsizes and radial distances can be determined by an integration calibration

process, computing the stepsize based on the local truncation error. Since the stepsize

distribution over the orbit generally depends on the orbital elements, particularly the

semimajor axis and the eccentricity, such a calibration would be repeated only if these

elements changed considerably. This model of integration is generally less sensitive to the

numerical difficulties associated with variable stepsize integration.

The same stepsizes are used for integration of the variational equations and the equations

of motion.

6.2 THE RUNGE-KUTI'A INTEGRATION METHOD

The Runge-Kutta method is a numerical integration technique by which the value of the

dependent variable at some future time can be calculated from a weighted summation

formula, similar to a numerical quadrature. This method is equivalent to a Taylor series

solution of the equations of motion up to a certain power of the integration stepsize in the

independent variable. Taylor series solutions require differentiation of a given function a

number of times, followed by evaluation of these derivatives at the point of interest. The

Runge-Kutta method requires evaluation of the derivative at a number of selected points

within the integration time step. For example, in the spacecraft equations of motion the

acceleration is evaluated a number of times within each integration step to obtain the

position and velocity at the end of the integration step.

Runge-Kutta methods have the advantage that the interval of integration can be readily

changed. The formulas are single step; thus, they do not require any past history of

values. In common with other special perturbation methods, the Runge-Kutta method is

extremely flexible.

The three Runge-Kutta methods available in GTDS are the Shanks eighth-order Runge-

Kutta formulation, the Hull Runge-Kutta 3(4+) integrator, and the fourth-order Runge-

Kutta integrator with Gill's coefficients. These are described in the following subsections.
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6.2.1 SHANKS EIGHTH-ORDER RUNGE-KWIWA FORMULAS

The Shanks Runge-Kutta formula used in GTDS is an eighth-order formulation requiring

10 function evaluations (Reference 8). The expression f(x, y) is the derivative on the

right-hand side of the first-order differential equation dx/dy = fix, y) that is to be evalu-

ated. This function arises from the equations of motion or from the variational equations.

The Shanks eighth-order Runge-Kutta algorithm is computed as described below.

The following formulas apply to a single component of the vector of the quantities being

integrated, where the vector of dependent variables is denoted by x- and the independent

variable is denoted by y:

f0 = fiX0, Y0) (6-88a)

fi --- f(X-0 + ki, Yo + aih) (i = 2, ..., 9) (6-88b)

where

kl = alhbl,o fo (6-89a)

i

ki = aih 2 b2,j fj (i = 2, ..., 9) (6-89b)

j=O

The next value of the component x is computed from the present value Xo and the Shanks

coefficients ai, bij, ci, as follows:

9

X = X-0 + 2 Ci fi (6-90)

i=0

In these formulas, the Runge-Kutta stepsize in the independent variable is denoted by h

and the subscript 0 designates current values. Table 6-1 contains the coefficients for the

eighth-order Runge-Kutta scheme. The coefficients are presented in a form convenient for

calculating the summations required to determine the ki values.

6-23



Table 6-1. Coefficients for the Eighth-Order Runge-Kutta Scheme

INDEX

I

1

2

3

4

5

6

7

8

9

VALUE OF THE a I
COEFFICIENT

4/27

2/9

1/3

1/2

2/3

1/6

1

5/6

1

i-1

VALUE OF at E bLJ

j=0

4/27

1/18 ( 1 + 3 )

1/12 ( 1 +0+3)

1/8 ( 1 +0+0+ 3 )

1/54( 13+0-27+42+ 8)

1/4320 (389+0-54+966-824+243)

1/20 ( -234 + 0 + 81 - 1164 + 656 - 122 + 800 )

1/288 (-127+0+ 18-678+456-9+ 576+4)

1/820 ( 1481 + 0 - 81 + 7104 - 3376 + 72 - 5040 - 60+ 720 )

( Co+ cl +c2+c3+c, + cs+ce+cT+ Ce+ C=)= 1/840 (41 +0+ O+ 27+272 +27 +216÷0+216+41 )

6.2.2 HULL RUNGE-KUTrA FORMULAS

The Hull Runge-Kutta 3(4+) integrator (Reference 9) is used in GTDS to perform impact

computations. This Runge-Kutta method is a self-starting, single-step integration scheme

that computes the value x-(t2) for some t2 = tl + _" (where 1: is the Runge-Kutta stepsize,

l" > 0), given a first-order differential equation

dx-
= f(t, x-) (6-91)

dt

with initial condition

x(tl) -- x_ (6-92)
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where

f = function arising from the equations of motion or the variational
equations

t = independent variable (usually time)

X = vector of the dependentvariables

RI = value of _ at time tl

This is accomplished by evaluating the function f at N values of t (tl < t < t2) and

using the weighted averages of these values to compute the correction to the initial value,

X1.

If

fa = f(tl, xl) (6-93a)

where

fj = f(tl ÷ ajr, xa + kj) (6-93b)

Mj

kj = l" Z bjgft [for all j (2 < j < N)]

g=l

(6-94)

then the dependent variable x(t2) is as follows:

N

x(t2) = X(tl + 3) = xl + r Z cjfj

j=l

(6-95)

Table 6-2 gives the coefficients aj, bjg, cj for the Hull Runge-Kutta 3(4+) method (N = 5,

Mj = j - 1) for integration of first-order differential equations. This method is of order p,

where 4 < p < 5. An estimate of the truncation error, computed by differencing the values
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of x(tl + r) obtained using this integration method and a similar method of order 3, is
given by

5

E(t, + r) = r _ 6j fj (6-96)

J=l

where the values of 6j are error coefficients given in Table 6-2 and fj is evaluated ac-

cording to the Runge-Kutta 3(4+) method. If F-_x is a predetermined maximum that the

relative truncation error

E(t, + r)
Erel = (6-97)

Ix(h + r)l

is allowed to reach, then the optimum stepsize, given the initial Runge-Kutta stepsize r, is

(Emax'_ 1/4 (6-98)

The optimum stepsize (ropt) can be used in the Hull Runge-Kutta 3(4+) method to vary

the stepsizes.

6.2.3 FOURTH-ORDER RUNGE-KUTrA FORMULAS WITH GILL'S

COEFFICIENTS

The fourth-order Runge-Kutta integrator with Gill's coefficients (RKG) (Reference 10) is

provided for propagation of the spacecraft state vector and the state partial derivatives.

The RKG method computes the integration stepsize as a function of the eccentricity.

The equations of motion or variational equations are expressed as a set of first-order

differential equations

-v

d_-
- f(x-, t) (6-99)

dt

with the initial condition

x-(to) = X-o (6-100)
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Table 6-2. Coefficients for the Runge-Kutta 3(4+) Integrator (N = 5)

INDEX

J

I

2

3

4

5

COEFFICIENTS

aj cj

o 0.10888304916410344

2/7 0.24547988976401333

7/15 0.33907286031851855

35/38 0.44251397222216452

1 - 0.13594977146879983

6j

-0.49939143641338931 x 10 -2

0.68461187539313607 x 10 -1

- 0.10922264375986756

0.16170514205348768

- 0.13594977146879983

INDEX

1

2

3

4

5

COEFFICIENTS bit (Mj = j - 1)

1 3 4

0.28571428571428571

- 0.93777509730408418

0.60836163032387864

1.4613130509525770

x 10 -1 0.56044417639707508

-1.2040651669594905

- 3.8111651289355121

1.5167561682145592

3.6068242907277299 -0.25697221274479485

where

f

t

R

= function arising from the equations of motion or variational equations

= independent variable

= vector of dependent variables

The procedure to advance x- from to to time tR is as follows. The Runge-Kutta stepsize

hour, hr, is computed from

R2 (6-101)
h,=q ,/-GM
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where

[0.01 (fore > 0.2)
q = 1.0.5 (fore < 0.2)

(6-102)

and

R = magnitude of the position vector

GM = gravitational constant of the central body

If

hr > tR - to (6-103)

then

where tR is the desired output time.

hr = tR - to (6-104)

The parameters x- are then advanced to time t4 = to + hr as follows:

K--1 = hr f(Ro, to) (6-105)

__

x-1 = X--o+ _-Ka
(6-106)

ql = Ka (6-107)

-- 1 h,)
K2 = h_ f(X-1, to +

(6-108)

×-_=., + (1-4)(K_ - q,) (6-109)
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_ 1 hr) (6-111)
K3 = hr f(K2, to +

{x--3 = x--= + 1 + (K3 - q-2) (6-112)

= +2 q2 (6-113)

K--4 = h, f(X-3, to + h,) (6-114)

1 K4- 1 (6-115)
x-a = _3 + -g Tg3

6.3 MAPPING OF POSITION PARTIAL DERIVATIVES

It is well known from the theory of linear differential equations that the solution of the

n-dimensional linear system

x = D(t) X- (6-116)

satisfying the initial condition

X-(to) = X-o (6-117)

is given by

x-(t) = _(t, to)X-o (6-118)
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where _ is a fundamental matrix solution of Equation (6-67), i.e., an n x n matrix
satisfying

= D(t) _ (6-119)

with initial condition

@(to, to) = I (6-120)

In this context, _ (t, to) is called the state transition matrix. The properties of _ can be

used to enhance the computational algorithm for position and velocity partial derivatives

as follows. During the integration of a trajectory, a column of C(t) corresponding to a

dynamic parameter can become zero. For example, when leaving the sphere of influence

of the Earth, the acceleration partial derivative with respect to a geopotential coefficient

of the Earth becomes effectively zero. If this time is denoted by T, then the position

partial derivative with respect to this parameter, denoted by xj(t), satisfies an equation of

the form of Equation (6-67) for t > T, where

6x6

(6-121)

with an initial condition X-(T).

If _(t, T) denotes the state transition matrix satisfying _(T, T) = I, then the required

position partial derivative can be obtained for any t > T by

x-(t) = _(t, T)X-(T) (6-122)

The overall state transition matrix, _(t, to) for t > T can be computed by

• (t, to) = _(t, T)_(T, to) (6-123)
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where the elements of the matrix _(T, to) are given by

(I)(T, to)

m

O (T)
0Ro

o_(T)

aRo

OR(T) -

(6-124)

The components of _(T, to) are contained in the Y and Y matrices defined in Equa-

tions (6-54) and (6-55) when t ---T (assuming _ contains the state).

The computational strategy for computing the partial derivative of x-(t) is to integrate the

variational equations up to t = T using the method described in Section 6.1.4 or the

method described in Section 6.2. At that point, the matrix _(T, to) is stored; _(T, T) is

initialized; and, for any t > T, _(t) is computed using Equation (6-73) and _(t, to) is

computed using Equation (6-123). A similar process can be used for multiple event times

(Ta, T2, ...Tr) at which various columns of C(t) become zero. Assuming

Ta -< T2 -< ... --< Tr -< t, Equation (6-123)becomes

(I)(t, to) = (I)(t, Tr)(I)(T,, Tr-l)... (I)(Ta, To) (6-125)

6.4 TIME REGULARIZATION

For orbits that are highly eccentric or that connect regions with significantly different

gravitational force magnitudes, accurate direct integration of Equation (6-29) or (6-49),

with time as the independent variable, usually requires either a very small fixed stepsize

or many stepsize changes in a variable stepsize scheme. Frequent stepsize changes are

costly and result in errors propagating due to the interpolation procedure used to restart.

To improve this situation, the classical approach is to transform the independent variable

to a new variable, denoted by s, defined by the relation (Reference 11)

dt Rn
= (1 ___ n < 2) (6-126)

ds

For n = 1 or 2, this variable corresponds to the use of eccentric anomaly or true anomaly

as the independent variable in the integration of elliptic motion. The use of regularization

in the computation of free-flight Earth-Moon trajectories is investigated in Reference 12.
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This study indicates increasedcomputational accuracy and a significant reduction in com-
putation time due to regularization.

To express Equation (6-29) or (6-49) in terms of the new independent variable s, the
following notation is employed:

dg Rn
Dg = ds = _ _ (6-127)

d2g = --Rn[nRn-1 1_g + Rng] (6-128)
D2g = ds 2 fl

where

t_ = R- _- (6-129)
R

and g(t) is any arbitrary vector-valued function in the t system. Similarly,

'/-fig' (6-130)
D-lg= g = Rn

D -2 g = g' = R _ R -n g Rn,1 g' (6-131)

where the prime indicates differentiation with respect to s, and

R' Rn-I

- _- (R-" _) (6-132)

The transformed Equation (6-29) can then be expressed as

R" = D 2 R-(t) (6-133)
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,, n R 2n-1 l_ (6-134)t =

The integration of Equation (6-134) is required to compute the time, t, as a function of

the new independent variable, s.

The integration of Equations (6-133) and (6-134) can be carried out with essentially the

same procedures outlined in the previous sections. The additional remarks required are as

follows:

1. Given t(s), R(s), and R'(s), a corresponding R"(s) is determined by first com-

puting the time derivatives

= D-' R' = R'(s) (6-135)
Rn(s)

and

- g(s)
R3(s)

+ P[t(s), R(s), _(s)] (6-136)

yielding

-- R2n (_n)
R-"(S) - n R' R' R 2n-3 R + -- P t, R-, R' (6-137)

R #

. The value of the independent variable, s, corresponding to an output request

time or measurement time, tr, can be obtained by inverse interpolation in the

ti array obtained by the integration of Equation (6-134). This value of s can

then be used to compute the required R and R- by the interpolation procedure

indicated in Section 6.1.5.

Analogous regularization procedures can be used for Equation (6-49). The regularized

variational equations are of the form

[__ ] _[ n t_ I]y, R 2"Y" = A(t) Y + B(t) + _ + _ C(t) (6-138)
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An additional advantageof usingregularized time is that the initial (fixed) stepsizecan be
conveniently selectedas a fraction of the regularized period S, where, if T is the satellite
period,

f0 T f_ (6-139)S = R---Z dt

The integral can be evaluated by quadrature for the two-body problem by a change of

variable from t to true anomaly, f, resulting in the formula

S = p(n-2+l/2) (1 + e cos f)n-2 df (6-140)

where p is the semilatus rectum of the ellipse. Frequently, a fraction of this period (of the

order 1/100) will serve as an adequate stepsize for the integration of Equations (6-131)

and (6-132).

A drawback of the method is that the equations of motion in the _: system (Equa-

tion (6-133)) always contain explicit first derivatives, regardless of the situation in the

t system, (see Equation (6-131)). Thus, the computational simplifications possible for

velocity-free accelerations do not apply. Hence, the trade-off between the advantages and

disadvantages of the regularized time integration depend upon the stepsize, length of arc,

efficiency requirements, and eccentricity magnitude.

Experience has shown that regularized time integration considerably improves the effi-

ciency of variable stepsize integration for moderate to high eccentricities (e _> 0.2). For

the Cowell formulation, the value n = 3/2 seems to give best results, whereas, for orbital

element formulations, the optimum value of n appears to be 2 (Reference 13). Improve-

ments in the accuracy of the integration of the time equation (Equation (6-134)) can also

be obtained through use of a time element (see Appendix B).
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CHAPTER 7--MEASUREMENT MODELS

Spacecraft tracking measurement modeling involves the measurement of some physical

property of electromagnetic wave propagation between the tracking station and the space-

craft and analytically relating the measured quantities to the spacecraft state vector. This

chapter presents the models and associated equations for measurement modeling in

GTDS. The models consist of kinematic equations that yield the ideal values of the meas-

urements in trajectory-related units (e.g., range, range rate, azimuth, and elevation).

Therefore, the modeled measurements are functions of the spacecraft's best estimated

position and velocity, as well as specified model parameters (e.g., tracking station loca-

tion and timing errors). Preprocessing of the actual data, which is usually done separately,

includes calibration, time-correction, smoothing, and compacting and converting the raw

tracking data into units compatible with the calculated measurements. However, the

preprocessor program does not correct for the effects of atmospheric refraction and may

not correct for propagation times, transponder delays, or antenna mount errors. As a

result, corrections for these systematic errors are computed in GTDS and applied to the

actual data. Systematic errors may still be present.

The procedures and formulations presented in this chapter describe all data types that are

implemented in GTDS. Section 7.1 presents a general description of the forms of the

computed measurements and their partial derivatives. Section 7.2 gives the equations and

transformations for modeling ideal measurements and their partial derivatives for ground-

based tracking systems. Sections 7.3, 7.4, and 7.5 discuss TDRSS tracking, radar altime-

ter tracking, and very long baseline interferometer tracking, respectively. Atmospheric

effects are discussed in Section 7.6, and other corrections (light-time delay, transponder

delay, and antenna mount errors) are presented in Section 7.7. Finally, the interrelation-

ship between the measurement models and the estimation process is summarized in Sec-

tion 7.8.

7.1 GENERAL DESCRIPTION

The basic orbit determination process consists of differentially correcting estimates for a

set of parameters to minimize the sum of squares of the weighted differences between the

actual measurements and the corresponding quantities computed from the measurement

model. In GTDS, this model is assumed to be of the form

Oc = fo[R(t + tit, p-), _(t + tit, p---), t-s] + b + RFc (7-1)
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where

t

6t

O_

R, R

b

fo

RF¢

= time tag of the measurement

-- timing bias

= computed measurement at the corrected time t + 6t

= vehicle position and velocity at an appropriate time related to

t = t + 6t (For many measurements modeled in GTDS, the posi-

tion and velocity are expressed in local tangent coordinates with

respect to a station position, t-,. Other measurements are modeled
in terms of the vehicle inertial state vector. In either case, the state

vector is dependent on the dynamic parameter vector, _. For

TDRSS tracking, the TDRS position and velocity are also included

in the measurement model.)

= measurement bias or offset

= geometric relationship defined by the measurement type at time
t+ 6t

= correction to the measurement due to atmospheric refraction, light-

time delay, transponder delay, antenna mount errors, etc.

The measurement model parameters that can be estimated are the following:

m

P

b

tSt =

dynamic parameters in the equations of motion that can be estimated;
these include variables related to the position and velocity, gravitational

harmonic coefficients, drag parameters, etc.

location in Earth-fixed coordinates of the transmitting and receiving sta-

tions, as well as the Bilateration Ranging Transponder (BRT) locations
in the case of TDRSS Bilateration Ranging Transponder System (BRTS)

tracking

measurement bias, which depends on the measurement type and the

tracking station

timing bias, which is both station and pass dependent

f

The measurement models simulate the following tracking system data types, for the data

types listed:

• Goddard Range and Range-Rate (GRARR) System, Applications Technology

Satellites Ranging (ATSR) System, STDN Ranging Equipment (SRE) Very High

Frequency (VHF) System, SRE Unified S-band (USB) System, and Space

Ground Link System (SGLS)

-- Range or propagation time delay

-- Range rate, range difference, or Doppler shift
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-- X gimbal angle or azimuth

-- Y gimbal angle or elevation

• C-band Radar System and Smithsonian Astrophysical Observatory (SAO) Laser

Systems

-- Range

-- Azimuth

-- Elevation

• Minitrack Interferometer System

-- Direction cosine t

-- Direction cosine m

• Tracking and Data Relay Satellite System (TDRSS)

-- Range

-- Doppler shift

-- Azimuth

-- Elevation

• Radar Altimeter (RA) System (not currently available)

-- Altitude

• Very Long Baseline Interferometer (VLBI) System (not currently available)

-- Time difference

-- Time-rate difference

After preprocessing, some measurements are converted to metric form while others are in

the form of time intervals. In general, the time tag on each measurement is converted to

coordinated universal time (UTC), which is derived from Atomic Time (A. 1) so as to be a

close approximation to UT2 (see Chapter 3).

The differential correction process requires the calculation of the computed measure-

ments and the systematic error corrections that are applied to the actual measurement

data. The process also requires computation of the partial derivatives of the measure-

ments with respect to the model parameters p, rs, b, and _t. These partial derivatives

can be expressed as follows:

ao_ = af__£o (7-2a)
a_- a_

00_ Ofo (7-2b)
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0Oc
= 1 (7-2c)

Ob

OOc Ofo
= - f0 (7-2d)

O(&) 0(&)

It is assumed that the partial derivatives of the systematic error correction terms, RFc,

with respect to _, t-s, b, and &, are either zero or negligible.

7.2 GROUND-BASED TRACKER MODELS

This section presents the transformations and equations for computing the ideal measure-

ments (i.e., no systematic errors b, RFc, or 6t present). The measurements correspond to

those from the GRARR, ATSR, USB, SRE, SGLS, C-band, laser, and Minitrack systems.

The tracking process is described in Section 7.2.1, with a discussion of the local tangent

plane coordinates given in Section 7.2.2. The measurement equations and partial deriva-

tives are given in Section 7.2.3. Since many of the measurements are common to more

than one of these systems (e.g., the range rate, 0, is common to GRARR, ATSR, and

USB), the discussion is organized by measurement type rather than by measurement sys-
tem.

7.2.1 TRACKING PROCESS

For all systems except the Minitrack System, the electromagnetic signal is transmitted

from the ground station at time tT and is received at the satellite at time tv • The signal is

retransmitted by the satellite transponder (except for the laser systems, where a

retroreflector is used) at time tv + At, where Ar is the transponder delay. The return

signal is received at the ground station at time tR. Thus, precise modeling requires that

the tracking system be treated as a dynamic process, since both the satellite and the

tracking station are moving relative to inertial space during the time it takes the signal to
traverse the round trip from the ground station to the satellite and back.

The tracking instruments measure three basic quantities: the time interval required for the

signal to traverse the path from the ground transmitter to the satellite and back to the

ground receiver, the direction of the received signal at the ground station as measured by

the receiver antenna gimbal angles, and the Doppler frequency shift of the received signal

compared with the transmitted signal. Preprocessor programs multiply the round-trip time

interval by the signal propagation speed, thereby converting it to the geometric distance.

The GTDS measurement model then relates the station-to-spacecraft range vector to the

geometric distance and its direction angles at the receiver. The Doppler frequency shift
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data are related to the station-to-spacecraftrange rate as described in Appendix A (Sec-
tions A.1.2.3 and A.3.2) and in Appendix C.

7.2.2 LOCAL TANGENT PLANE COORDINATES

The ground-based tracking measurement models are most conveniently expressed in

station-centered local tangent plane coordinates, except for the USB and ATSR range and

range-rate measurements. At the time of the measurement computation, the spacecraft

state vector is available in either B1950.0, J2000.0, or true of reference date inertial

coordinates. The inertial state vector must first be transformed to body-fixed coordinates

using the appropriate transformation matrices from Section 3.3. The transformation from

mean of B1950.0 or J2000.0 coordinates to body-fixed coordinates is expressed as

t-b(t) = B(t) C(t) R-(t) (7-3a)

rb(t) : 13(t) C(t) R(t) + B(t) C(t) _-(t) (7-3b)

where C and B are the transformation matrices from B1950.0 or J2000.0 coordinates to

true of date coordinates (Section 3.3.1) and from true of date to body-fixed coordinates

(Section 3.3.2), respectively; R- and gb are the spacecraft position vectors in B1950.0 or

J2000.0 coordinates and body-fixed coordinates, respectively; and _ and rb are the

spacecraft velocity vectors in B1950.0 or J2000.0 coordinates and body-fixed coordinates,

respectively. The tracking station position vector, gs, expressed in body-fixed coordinates,

is given in Section 3.3.7 as

-(N_ + h_) cos ¢Ps cos 2_-

(Ns + hs) cos Os sin 2s

[Ns(1 - e 2) + hs] sin Ss

(7-4)

where e 2 = 2f - f2, f is the flattening coefficient of the Earth, and

NS

Re

]1 - (2f - f2) sin 2 _p_
(7-5)
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The spacecraft position and velocity vectors, expressedin local tangent plane coordinates,
are given in Section 3.3.7 as

_t(t) = M_t[Fb(t) - ts] (7-6a)

_,(t) = Mlt rb(t) (7-6b)

Substituting Equations (7-3) into Equations (7-6) relates the local tangent coordinates to
the inertial coordinates

t-it = Mlt[B(t) C(t) R(t) - t-s] (7-7a)

rlt = Mlt[13(t)C(t)R(t) + B(t)C(t) _-(t)] (7-7b)

The vectors t-it and _t are used to model the tracking measurements.

The partial derivatives of the computed measurement are calculated using local tangent

coordinates as the intermediate system (except for the USB and ATSR ranges and range

rates) as follows:

00¢ Ofo Ofo a_, (gR" afo

aO a_ a_, OR a_ ar_t OR 0_- + " (7-8)
OR

From Equations (7-7),

--= = M,, B(t) C(t)
OR

(7-9a)

Ofit
-- - Mlt ]3(t) C(t)

OR
(7-9b)

0 rlt

OR
- Mlt B(t) C(t) (7-9c)
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Substituting Equations (7-9) into Equation (7-8) yields

0Oc Of0 M_t B(t) C(t) OR
o_ afh o_ Ofo I ORM,,B(t)C(t) + M,, B(t) C(t) a_] (7-10)

The matrices O_/ag and a _/o_ are obtained from the variational equations described in

Chapter 4. The partial derivatives of the vacuum measurements, Ofo/Ofit and 0f0/O rlt,

are presented in Section 7.2.3.

7.2.3 MEASUREMENT EQUATIONS AND PARTIAL DERIVATIVES

In the absence of an atmosphere, electromagnetic signals follow a straight line path be-

tween the station and the spacecraft, traveling at the vacuum speed of light. Equations

describing vacuum signal propagation are presented below, along with the pertinent par-

tial derivatives required for the orbit determination and error analysis processes. Correc-

tions for atmospheric effects are given in Section 7.6. A functional description of each

trajectory sensor system, as well as a description of the data preprocessing, can be found

in Appendix A.

7.2.3.1 Gimbal Angles

The gimbal angles provide the direction of the received downlink signal at the ground

station. For rotatable dish antennas, the direction angles are measured from the antenna

gimbaling system. For the fixed antennas in the Minitrack System, however, the signal

direction is determined from principles of interferometry.

Assuming no atmospheric refraction, the signal direction at the ground receiver is deter-

mined from the straight-line propagation path from the spacecraft at time tv to the

receiving station antenna at time tR. GTDS approximates this direction by the instantane-

ous straight-line path from the spacecraft to the station at time tv. This approximation

introduces negligible error in the signal direction angles because of the relatively small

distance (relative to inertial space) traversed by the station during the downlink propaga-

tion time interval.

The following subsections describe the various gimbal angle models included in GTDS.

7.2.3.1.1 Gimbal Angles X3o and Y3o (GRARR, ATSR, USB, and Laser Systems)

The gimbal angles for the 30-foot antennas in the GRARR, ATSR, USB, and laser systems

are denoted X3o and Y3o. The X3o-axis is aligned north-south in the local horizon
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(tangent) plane at the tracking station. The referenceplane for the angular measurements
is the vertical plane, which is aligned east-westand includes the tracking station zenith.
The angle X3o is measured from the vertical axis (zenith) to the projection of the station-
to-spacecraft vector onto the referenceplane. This angle is positive whenthe spacecraftis
east of the station, i.e.,

X3° = tan-l(Xlt)_zlt) (a'2 -< X3° < 2) (7-11)

The angle Y30 is measured from the projection of the station-to-spacecraft vector onto the

reference plane to the vector itself. This angle is positive when the spacecraft is north of

the station, i.e.,

Y3° = tan-1 (_/ ylt 2)x2 + z ( _r -< Y3° -<2)---2 (7-12)

The partial derivatives of X3o and Y3o with respect to the local tangent plane coordinates

are

0X3o 1
= [zlt, 0, - xlt] (7-13a)

OX3o
= 0 (7-13b)

and

OY3o_ 1 F--_Xl!YE _/x_+ z2 _-_Y,t_Zlt.] (7-13c)
0_, _t.,/,,_, + z_' ' ,/,,?,+ z_J

0Y3o
- 0 (7-13d)
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where

= _Jx_+ y_ + z_ (7-14)

7.2.3.1.2 Gimbal Angles Xs5 and Ys5 (USB System)

The gimbal angles associated with the USB 85-foot antennas are denoted Xs5 and Yss.

The Xss-axis is aligned east-west in the local horizon (tangent) plane at the tracking

station. The reference plane for the angular measurements is the vertical plane, which is

aligned north-south and includes the tracking station zenith. The angle Xs5 is measured

from the vertical axis (zenith) to the projection of the station-to-spacecraft vector onto the

reference plane. This angle is positive when the spacecraft is south of the station, i.e.,

X85 = tan-l( -ylt_zltj (_2 < Xs5 < 21 (7-15)

The angle Ys5 is measured from the projection of the station-to-spacecraft vector onto the

reference plane to the vector itself, This angle is positive when the spacecraft is east of

the station, i.e.,

( Xlt ) (_2 < y85 < 2/ (7-16)Yss = tan-I _._/y_ + z_)

The partial derivatives of Xs5 and Y85 with respect to the local tangent plane coordinates

are

0X85 1 [0, -zlt, Ylt] (7-17a)
at-,, (y_ + z_)

0X85 = 0 (7-17b)

(9_t

and

0Y85 1 r/ - Xlt Ylt
--Or-it = _-L Y_ + z_, _/y_.... + z_'

s--x_t z_ -1 (7-18a)

Cy_ + z_t/
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OYs5
• = o (7-1Sb)

7.2.3.1.3 Gimbal Angles A and E (ATSR, C-Band, and Laser Systems)

The azimuth angle, A, is measured in the local tangent (horizon) plane, clockwise from

north to the projection of the station-to-spacecraft vector onto the local tangent plane. This

angle is positive when measured eastward (clockwise) from north, i.e.,

A= sin-1 _v / Xlt 2) (0 < A -< 2Z0 (7-19a)x_+y

A = cos-1 (v/ Ylt 2)(0 -< A _< 2_r) (7-19b)x2+y

The elevation angle, E, is measured from the projection of the station-to-spacecraft vector

onto the local tangent plane to the vector itself. This angle is positive whenever the space-

craft is above the horizon, i.e.,

The partial derivatives of A and E with respect to the local tangent plane coordinates are

0A 1

O_l, - (x 2 + yz)[Ylt, -xlt, 0] (7-21a)

0A
- 0 (7-21b)

Or ,

and

0E _ 1 F-xltz_ -Ylt z,t _/Xl2t + y_] (7-22a)
0t-it 02 I.__/x2 + y2' v/x2 + y2'
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0E
-- 0 (7-22b)

0 t-it

7.2.3.1.4 Direction Cosines g and m (Minitrack System)

The direction cosine g is the cosine of the angle between the station-to-spacecraft vector
A
Xitand the axis pointing toward the east in the local tangent system (the axis). This

direction cosine is positive when the spacecraft is east of the station, i.e.,

g_ Xlt (7-23)
O

The direction cosine m is the cosine of the angle between the station-to-spacecraft vector

and the axis pointing toward the north in the local tangent system (the Ylt^ axis). This

direction cosine is positive when the spacecraft is north of the station, i.e.,

m- Yl_ (7-24)
0

The partial derivatives of to and m with respect to the local tangent plane coordinates are

{?to 1

0fit {}3 [(Y_ + z_), -Xlt Ylt, -Xlt Zlt] (7-25a)

Oto
- 0 (7-25b)

{?tit

and

0m 1

O_it 03 [- xl, Ylt, (XlZt + zZ), - Ylt z11] (7-26a)

{?m
- 0 (7-26b)

{?r.
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7.2.3.2 Range (GRARR, ATSR, USB, SRE VHF, Laser, SGLS, and C-Band Systems)

From the description of the tracking process in Section 7.2.1, it is seen that all trackers

provide the user with the round-trip light-time delay from the transmitter through the

spacecraft to the ground receiver, along with an associated time tag. The round-trip range
is seen to be

oat = I v(tv)- VT(tT)I+ IfR(t ) - -v(tv + Ar)l (7-27)

where

0RT = round-trip range

_v = spacecraft position vector in inertial Cartesian coordinates

t-r = ground transmitter position vector in inertial Cartesian coordinates

fR = ground receiver position vector in inertial Cartesian coordinates

Ar = spacecraft transponder delay

tT = time the signal is transmitted from the ground station

tv = time the signal is received at the satellite

tR -- time the signal is received at the ground station

In the case of the USB and C-band systems, the time tag on the raw data corresponds to

the time tR at which the measured signal arrives at the ground receiver; for the GRARR

and ATSR systems, the time tag on the raw data corresponds to the ground receive time,

t_, less the measured value of the round-trip light-time delay. For all systems, the pre-

processor provides GTDS with Q(tR), the average of the uplink and downlink propagation

distances (QRT/2)- The value 0(tR) is generated by multiplying the measured round-trip

propagation delay by c/2. The preprocessor also provides tR by making the appropriate

modifications to the raw time tag for the GRARR and ATSR data.

For the greatest accuracy, the expected value of the range should be calculated by deter-

mining the uplink and downlink path of the signal as defined in Equation (7-27). This

method requires an iterative process to determine the uplink and downlink light-time de-

lays. A second, less accurate, method is to approximate the range by calculating the

instantaneous range at the spacecraft turnaround time. The iterative method is used to

calculate the expected range for the USB, SRE VHF, laser, SGLS, C-band, and ATSR

systems, while the instantaneous method is used for the GRARR VHF system.
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7.2.3.2.1 Iterative Method for the Expected Range

The expected value of the range O(tg) is computed from ephemeris information and sta-

tion coordinates using the following equation:

1

O(tR) = 3[ It-v(t0 - gT(ta-)l + It-v(t_) - _-g(tR)l l (7-28)

For simplicity, this equation is presented in an inertial reference frame, where

t-v = spacecraft inertial position vector

t-a- = transmitting site inertial position vector

t-R = receiving site inertial position vector

ta- = time at which the measured signal left the ground transmitter

tv = time at which the measured signal was received and retransmitted by
the spacecraft (The assumption of instantaneous turnaround is used;
the constant bias in the measured range caused by the spacecraft elec-

tronic delay is accounted for as a measurement error elsewhere in

GAS.)
tR = time tag of the reduced measured range (i.e., the time at which the

measured signal arrived at the ground receiver)

The algorithm used in GTDS to compute Q(tR) proceeds as follows:

1. Calculate gR(tR)

2. Calculate iteratively the downlink propagation distance, Qd(tR), using the fol-

lowing equations:

Od(tR) = I - (t0 - t-R(tR)I (7-29a)

0d(tR) = 0d(tR) (7-29b)
C

tv = tR - did(tR) (7-29C)
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The iteration process is initiated by assuming that tv = tg and is terminated

when successive values of da(tg) agree to within 10 -8 second.

Calculate iteratively the uplink propagation distance, Ou(tg), using the following

equations:

0u(ta) = I_-,(t,) - FT(tT)I (7-30a)

du(ta)- Ou(tR) (7-30b)

,

tw = tv - d_(tg) (7-30c)

The iteration is initiated by assuming that du(tR) = da(tR) and is terminated

when successive values of du(tR) agree to within 10 -s second.

The following geometrically exact equation is used to compute the expected

value of the range, O(tR), for the USB, SRE VHF, C-band, ATSR, laser, and

SGLS systems:

o(tR ) = 0_(tR) + Oa(tR) (7-31)
2

7.2.3.2.2 Instantaneous Method for the Expected Range

Range data produced by the GRARR VHF system is less accurate than that produced by

the other tracking systems; therefore, it does not warrant the application of the iterative

solution described above. Instead, the following more efficient algorithm is used to deter-

mine an instantaneous approximation for O(tR) using GRARR range data:

O(tR) = Ig,(t_) - gT(tv)l

= IX 2 + y_ + Z2

= l ,(t01
(7-32)

where

t, = tR o(tR) (7-33)
C

and fit is the spacecraft position vector in local tangent plane coordinates.
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7.2.3.2.3 Range Partial Derivatives

The partial derivatives of the expected range (Equation (7-28)) in inertial coordinates

(USB System) are

OO(tR) 1 {0d[t-_(tv) - g-_(tw)] + 0u[gS(tv) - g_(tR)l} (7-34a)
2Ou Od

OO(tR) = 0 (7-34b)

0 rv (tv)

If it is assumed that Ou = 0d = 0(tR), Equation (7-34a) reduces to

OO(tg) 1 {2g_(tv) - [g_(tw) + r (trOl} (7-35)
2O(t_)

°

Ogv(tv)

The partial derivatives of the expected range in local tangent plane coordinates (for the

remaining systems) are

0O(tR) _ g_t(tv) (7-36)

0glt(tv) o(tR)

00(tR) = 0 (7-37)

7.2.3.3 Range Rate (GRARR, ATSR, USB, VHF, and SGLS Systems)

The range rate of a spacecraft is determined by measuring the Doppler shift of a signal

resulting from the relative motion between the station and the spacecraft. This can be

done either by measuring the time required to count a fixed number of Doppler-plus-bias

cycles, as with GRARR, ATSR, and SGLS, or by counting the Doppler-plus-bias cycles

over a fixed time interval, as with USB and VHF. For all tracking systems, the preproces-

sor converts the raw Doppler information transmitted from the stations to range rate and

a time tag.

There are three modes of calculating the expected value of the range rate for each of

these tracking systems. In the first method, the range rate is obtained by computing the
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time difference quotient of ranges calculated at the beginning and at the end of the

Doppler count interval, iteratively correcting for the light-time delays. The second method

uses the instantaneous ranges at the beginning and at the end of the count interval, with

no corrections for the light-time delays. The third, and least accurate, method is to calcu-

late an instantaneous range rate at the midpoint of the Doppler count interval as seen at

the spacecraft. The first method is used to compute the expected value of the range rate

for the USB and VHF systems, while the other two methods are used (optionally) for the
GRARR, ATSR, and SGLS systems.

7.2.3.3.1 Iterative Range Difference Method

The modeling of the expected value of the range rate that is most precise is to difference

the average range at the beginning and end of the count interval as shown below (Refer-
ence 1):

(tR) = [Ou(tR) + 0d(tR)] -- [O_(tP. - AtRR) + Od(tR - atgR)]
2AtRR

(7-38)

where

Ou(tR) =

0d(tR) =

AtRR =

uplink propagation path of a signal arriving at the receiver at tR

downlink propagation path of a signal arriving at the receiver at tR

Doppler count time interval

The calculations for these uplink and downlink ranges are iteratively corrected for the

light-time delay in exactly the same manner as the expected ranges modeled in Sec-

tion 7.2.3.2.1. This method is used for USB and SRE VHF measurements where the time

tag on the measured data is tR (corresponding to the end of the count interval) and the

count interval, AtRR, corresponds to the sample interval. This method is accurate for both

two-way and three-way Doppler measurements. Two-way Doppler measurements are ob-

tained when the transmitting and receiving antennas are the same, while three-way

Doppler measurements are obtained when the transmitting and receiving antennas are
different.
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The range-rate partial derivatives with respect to the epoch state elements, _ and R, are

computed most efficiently by using the following algorithms for the range partial deriva-

tives:

00(tR) 00(tR - AtRR)

0 0(tR) 0R 0R (7-39)

OR AtRR

00(tR) 00(tR - AtRR)

0 _)(ta) 01_ 01_ (%40)

• AtRR
OR

7.2.3.3.2 Instantaneous Range Difference

A less accurate but more efficient range difference formulation is available in GTDS for

GRARR, ATSR, and SGLS. It is assumed in this model that propagation delays are negli-

gible compared with the Doppler count time interval. The resulting equation is

b = 0(tv + AtRR) -0(tv) = I_-l,(tv + AtRR)I- [ri,(tv)l (7-41)
AtRR AtRR

The two range vectors fit (tv + AtRR) and fit (tv) are computed in the same manner as

those for the range computations (Section 7.2.3.2.2). In order to use this method in

GTDS, the preprocessor must provide tR, the time of the received signal at the beginning

of the Doppler count interval, and AtRR, the count interval. In the case of the SGLS

range-rate measurement, the preprocessor provides tR + 1 second. The partial derivatives

of 0 with respect to local tangent coordinates are

0b _ 1 [.fllT(tv + AtRR)

0rl, AtRR[lfi,(tv + AtRR)I
rT(tv) _ (7-42)

Ig ,(t )lJ

0b = 0 (7-43)

orl,

7.2.3.3.3 Average Range Rate

A third method, which is the least accurate but most efficient, calculates the instantane-

ous range rate at the midpoint of the Doppler count interval as seen at the spacecraft.
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This value is used to approximate the averagerange rate over the uplink and downlink
paths and is therefore denoted 0avg. It is computed as

bavg = fit(tv) fit (tv) (7-44)
I&(tOI

The position and velocity vectors are expressed in station-centered local tangent plane

coordinates evaluated at the vehicle turnaround time, tv.

This method is used for the GRARR and ATSR range-rate models. When this method is

used, the preprocessor modifies the time tag on the GRARR data according to the rela-

tionship

The partial derivatives of bang

tv = tR + AtRR 16,(t01 (7-45)
2 c

with respect to local tangent plane coordinates are

0Qavg- 11fflTOfflt _ O0__] (7-46)

m

,grit e

(7-47)

7.3 TRACKING AND DATA RELAY SATELLITE SYSTEM (TDRSS)

MODELS

In this section, the modeling of measurements from TDRSS is discussed (Reference 2).

Following an overview of the different types of tracking configurations, the details of the

modeling of range and Doppler measurements and their partial derivatives with respect to

solve-for parameters are given. Models for the TDRS beam angles are also presented.

7.3.1 TARGET TRACKING CONFIGURATION OF TDRSS

The three basic tracking-configuration categories in TDRSS are as follows:

• Hybrid tracking

• Two-way tracking

• One-way tracking
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For descriptive purposes, the path of the tracking signal is defined as a chain of nodes

and legs. A node is either a station or a spacecraft that can transmit and/or receive the

tracking signal. A leg is the signal path between two nodes. The measurements related to

these configurations are discussed below. Although the two-way tracking configuration is

the one that will be most frequently used, the hybrid tracking configuration measurements

are discussed first because of the generality of this configuration. The two-way and one-

way configuration measurements are described next, followed by a discussion of dif-

ferenced one-way relay Doppler measurements.

7.3.1.1 Hybrid Relay Range and Doppler Measurements

Using the definitions for nodes and legs, the signal path of a hybrid relay range measure-

ment is depicted schematically in Figure 7-1. The tracking signal originates and is trans-

mitted from a transmitting antenna at the White Sands station (node 1), propagates

through the forward-link TDRS (node 2), arrives at the receiver on the target (node 3), is

relayed to the return-link TDRS (node 4), and is finally received at a receiving antenna at

the White Sands, New Mexico, station (node 5). The target tracked by TDRSS can be

either an orbiting user spacecraft or a ground transponder.

For a hybrid relay Doppler measurement, the signal path is similar to that of a range

measurement, except that there is an extra node and an extra leg. The coherent Doppler

signal is transmitted from the receiving antenna (node 6) and is mixed at the return-link

TDRS (node 4) to maintain the phase coherency with the Doppler signal transmitted from

the transmitting antenna (node 1). The mixed Doppler signal is finally received at the

receiving antenna (node 5). The coherent Doppler signal propagation (leg 5) is shown as

a dashed line in Figure 7-1. Node 6 and node 5 are physically the same antenna but are

located at different positions in the inertial coordinate system because of the Earth's

rotation.

7.3.1.2 Two-Way Relay Range and Doppler Measurements

For a two-way relay range or Doppler measurement, the tracking signal also originates

from a transmitting antenna, propagates via a TDRS to a target, is retransmitted by the

target back to the same TDRS, and is received by the same ground antenna. Figure 7-2

shows the two-way tracking configuration in which nodes 1, 5, and 6 are physically associ-

ated with the same antenna but are located at different positions in the inertial coordinate

system because of the Earth's rotation. Nodes 2 and 4 are associated with the same TDRS

but are located at different positions in the inertial coordinate system because of the

orbital motion of the TDRS.

7.3.1.3 One-Way Relay Doppler Measurements

For a one-way relay Doppler measurement, a wide-beam tracking signal originates from

the target (node 3), proceeds to the return-link TDRS (node 4), mixes with the coherent
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Doppler signal transmitted from the ground receiving antenna (node 6), and is finally

received by the ground receiving antenna (node 5). Figure 7-3 shows a schematic dia-

gram of the one-way tracking configuration. There is no one-way relay range measure-

ment.
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(FORWARD-LINK

TDRS)
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(TARGET USER

LEG 1 SPACECRAFT OR
GROUND

TRANSPONDER)

NODE 4
(RETURN-LINK

TDRS)
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//i ,T
/

LEG 5 /
/

/
/
I
/
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I
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I
I
I
1
I
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/
DIRECTION OF

EARTH' S
ROTATION

NOTE: NODE 5 AND NODE 6 REPRESENT THE SAME PHYSICAL ANTENNA AT DIFFERENT TIMES.

Figure 7-1. Hybrid Relay Range and Doppler Tracking Configuration

Using Two TDRSs as Relays

7.3.1.4 Differenced One-Way Relay Doppler Measurements

Another type of measurement is feasible with the one-way tracking configuration. With a

wide-beam antenna system, the one-way tracking signal generated from the user space-

craft can be received by all three TDRSs. By differencing two streams of one-way Doppler
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k measurements, most of the oscillator frequency bias is cancelled. This is called a dif-

ferenced one-way relay Doppler measurement. With the multiple-access (MA) antenna

system on TDRS, this type of measurement allows near-simultaneous tracking of up to

five user spacecraft (see Reference 3).

FORWARD-AND RETURN-LINK
TDRS

NODE 4
NODE 2

LEG 2

LEG 1

\

\
\

\
\

\
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\
\

\
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\
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LEG 4

\

LEG 3

\

NODE3
(TARGET USER

SPACECRAFT OR
GROUND

TRANSPONDER)

DIRECTION OF
EARTH' S

'ATION

ANTEN
RECEIVE TIME)

NOTES: NODE 2 AND NODE 4 REPRESENT THE SAME TDRS AT DIFFERENT TIMES.

NODE 1, NODE 5, AND NODE 6 REPRESENT THE SAME PHYSICAL ANTENNA
AT DIFFERENT TIMES.

Figure 7-2. Two-Way Relay Range and Doppler Tracking

Configuration Using One TDRS as the Relay

7.3.2 MODELING OF TDRSS RANGE MEASUREMENTS

The time tag associated with a measurement is the receive time of the tracking signal at

the receiving station. Therefore, the backward signal-trace method is used in determining
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when the signalwas transmitted at each node and the position of the node at the moment
of transmittal. During the course of signal tracing, the signal travel time is iteratively
corrected for each leg. After the actual transmit time at node 1 is determined (see
Figure 7-4), the distances(legs) between nodes are summed, and the result is halved to
give the computedrange measurement,which is compared with the measuredambiguous
range to resolve the range ambiguity. In the modeling, transponder delay, atmospheric
refraction (Section 7.6), measurementbias, timing bias, and user spacecraft antennaoff-
set (Section 7.7.4) can be optionally invoked.
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NOTE: NODE 5 AND NODE 6 REPRESENT THE SAME PHYSICAL ANTENNA AT DIFFERENT TIMES.

Figure 7-3. One-Way Relay Doppler Tracking Configuration

Using One TI)RS as the Relay
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The iterative method for range computation, the transponder delay correction computa-
tions, and the range ambiguity computations specific to TDRSS are described below in
Sections7.3.2.1, 7.3.2.2, and 7.3.2.3, respectively.
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Figure 7-4. Position Vectors for All TDRSS Nodes in Inertial Coordinates
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7.3.2.1 Iterative Method for Range Computation

If the tracking signal is transmitted from node j at time tj and received at node j + 1 at

time tj,1 (see Figure 7-4), then the distance Oj traversed by the signal between these two

nodes is

Qj - c • (tin - t9 = I_÷,(tm)- _(tj)l (7-48)

where

C
= speed of light

_(tj) -- position of node j at time tj

gi÷l(tj÷l) = position of node j + 1 at time tj+l

The tracking node positions, gi(tj), correspond exactly to the position of the phase center

of the associated TDRSS tracking antenna. In general, for spacelinks the difference be-

tween this position and that of the center of mass of the TDRS or user spacecraft is

neglected. The option is available in GTDS (see Section 7.7.4) to account for this antenna

offset for the user spacecraft.

The Newton-Raphson iterative scheme (Reference 4) is adopted to solve the actual signal

transmit time, tj, so that

tjl+l = tj1 -t-
(tj_÷l- tj') -15÷,(tin) - 5(tj_)l

An ] (7-49)C- Uj,m %(t_)

where

+l

t_
An
Uj,j+I

_(t_)

= (n + 1) 'h approximation for tj

= n 'h approximation for tj

= n th approximation for the unit vector along the vector [gj+l(tj+l) - gj(tjn)]

= velocity of node j at t_
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This iterative scheme is continued until the condition 1¢+1 _ ¢1 < E is satisfied, where

is a small tolerance (e.g., e --- 10 -a second). Once the signal transmit time, tj, at

node j is found, the distance between the two nodes can then be calculated.

The process is repeated progressively backward for the leg between nodes j - 1 and j.

Without any transponder delay at node j, the signal reception time, tj, is the same as the

retransmission time, tj, which was just computed. With transponder delay, the signal

reception time at node j must be corrected by subtracting the transponder delay to give

the actual reception time, tj,

t] -- tj - Dj (740)

where Dj is the transponder delay at node j. This correction is discussed further in Sec-

tion 7.3.2.2.

After the signal reception time at node j is determined, the distance between node j - 1

and node j can be computed. This process is continued until the node where the signal

originated is reached. For two-way and hybrid data, this backward signal tracing starts at

node 5 and ends at node 1. For one-way data, it starts at node 5 but ends at node 3.

Finally, the range, summed over all the legs, is computed as

4

12o(T) - 2 Oj (for two-way and hybrid data) (7-51)

j=l

4

o(T) = £ Oj (for one-way data) (7-52)

j=3

where O (T) is the computed range measurement in kilometers at time tag T. The atmos-

pheric refraction corrections discussed in Section 7.6 are applied to this computed range.

The sum in Equation (7-51) is multiplied by a factor of one-half to be consistent with the

definition of the measured range discussed in Appendix A.

In solving Equation (7-49), the number of iterations can be reduced by proper selection of

fj(t°). The process could be started by setting _(t °) = _(tj÷l). In the case of TDRSS, the

magnitude of the radius vector for all the relay spacecraft is about 36,000 kilometers,

which corresponds to a light time of about 0.12 second.
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The iterative processis started in one of two ways. If the measurementis the sametype as
another recent measurement,the results of the light-time solution of the previous meas-
urement (plus an offset) are used to start the iteration procedure for the new measure-
ment. In the absenceof prior information, the iterative process can be started by setting
rj(tjO) = rj(tj+l - 0.12 second).

Using this simplification, the total number of iterations can be reduced from three or four

for each leg to one or two. Considerable computer resources can be saved in a typical

computer run of a few thousand measurements of two-way data, for instance, that have

four legs to be iteratively computed.

Further computer resource savings can be gained by evaluating _](tj) only once at tj1 for

the first iteration and keeping it as a constant in later iterations for light time. This is

justified by looking at the denominator of Equation (7-49), since the velocity of any Earth

spacecraft is on the order of 10 kilometers per second, which is much less than the speed

of light. In addition, the difference in _(q) from iteration to iteration is inherently very

small and is even more insignificant when compared with the speed of light.

7.3.2.2 TDRSS Transponder Delay Correction

A transponder does not retransmit a received signal instantaneously but does so after a

delay of a fraction of a second. The relationship between the reception time and the

retransmission time is

t] = tj - Dj (7-53)

where

tj = signal reception time at node j

tj = signal retransmission time from node j

Dj -- transponder delay at node j

This transponder delay has two profound effects on range modeling. One is a range cor-

rection due to the spacecraft displacement during this small period of time. The other,

which is predominant, is the distance that would have been traversed by the tracking

signal that is held by the transponder. These effects will be discussed separately.

In the discussion of the range computation in Section 7.3.2.1, the backward signal tracing

follows nodes 5-4-3-2-1, as shown in Figures 7-4 and 7-5, when there is no transponder
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delayassociatedwith any of the spacecraft.The computedrange is simply the sum of the
distancesbetweenall the nodes, i.e., 04 + 03 + 02 + 01.

2" 2' 2 4' 4

!
FORWARD-LINK

TDRS
TRAJECTORY

TARGET
TRAJECTORY

V

EARTH' S
SURFACE

f 1 5

RETURN-LINK
TDRS

TRAJECTORY

Figure 7-5. Configuration of All Nodes Because of Transponder Delays

-k

If both the TDRS transponder and the target transponder have delays, the backward signal

tracing follows the nodes 5-4-4'-3'-3"-2'-2"-1', as shown in Figure 7-5. In this case, the

distance between the receive station and the return-link TDRS, 04, is evaluated, as be-

fore, by using their positions at nodes 5 and 4, respectively. However, the distance be-

tween the return-link TDRS and the target, 0'3, is computed when they are at locations 4'
i

and 3', respectively; the distance between the target and the forward-link TDRS, 02, is

computed when they are at locations 3"and 2', respectively; and the distance between the
t 2 ttforward-link TDRS and the transmit station, 01, is calculated when they are located at
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and 1', respectively. Location 4' of the return-link TDRS is determined using

t4, = t4 - D4, where D4 is the transponder delay of the return-link TDRS. Likewise,

target position 3' is computed by the iterative light-time procedure, and position 3" is

determined by using ty, = (ty - D3).

Since all the transponder delays are very small (on the order of 10 -7 seconds), a target

spacecraft with a velocity of 10 kilometers per second would move 10 -6 kilometer,along

its trajectory. This movement will make 01, 02, 03, and Q4 different from 01, 02, 03,
r

and 04, respectively, but only by a small amount. If the target is a ground transponder,

the difference between the sums of Os and O'-, is even smaller. However, the bias in-

curred because of transponder delay (equal to the delay multiplied by the speed of light)

can be much more significant. Therefore, the computed range measurement, after consid-

ering transponder delays and light-time corrections, can be rewritten in terms of the posi-

tion vectors of all the nodes

o(T) = _- It].1 - Vii + c (7-54)

j=l k=2

where fj is the position vector of node j shown in Figure 7-4.

7.3.2.3 Range Ambiguity

As discussed in Appendix A, the range measurement is ambiguous by a multiple of PN

code periods. This ambiguity must be resolved before evaluating the (observed-minus-

computed (O-C)) residual between the measured range and the computed range in the

estimation process.

In general, the PN code period is a function of frequency. For TDRSS range data, the PN

code period is computed as follows (References 5 and 6):

p = _L (7-55a)
R

L = (21° - 1) x 28 chips (7-55b)

31
R = Fre e x chips per second (7-55c)

96 x S
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where

P = PN code period (seconds)

L = length of pseudorandomcode (chips)

R = rate of pseudorandomcode (chips per second)

Frec = frequency received at the return-link TDRS from a target (hertz)

S = 1600for single-accessreturn-link service at K-band frequency; other-
wise, S = 240

Although the PN code period is a function of the receive frequency, which may drift, it is
treated as a constant for a continuous passof tracking data. Once the PN code period is
evaluated, the range ambiguity interval is computed as follows:

c P (7-56)
_)A -- --

2

where

0A = range ambiguity interval (kilometers) (the range measurement in

Appendix A is one-half the round-trip range)

c = speed of light

P = PN code period (seconds)

The number of ambiguity intervals for a measured range at time tag T is then determined

by satisfying the following test:

1 (7-57)In(T) 0A + 0o(T) - 0(T)I -< -- 0A
2

where

n(T)

o(T)

Oo(T)

PA

= integer number of ambiguity intervals for a measured range at time

tag T

= computed range at time tag T (kilometers)

= measured range at time tag T (kilometers)

= range ambiguity interval (kilometers)
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The measured range is then restored, i.e.,

O'0(T) = n(T)0A + 0o(T) (7-58)

and the residual between the measured and computed ranges is evaluated by

(O - C) = 0'o(T) - 0(T) (7-59)

When estimation is done by differential correction, the number of ambiguity intervals, n,

needs to be computed only once in a computer run for each range measurement and can

be used in every differential correction iteration.

7.3.3 PARTIAL DERIVATIVES FOR RANGE MEASUREMENTS WITH RESPECT

TO SOLVE-FOR PARAMETERS

Table 7-1 lists the available solve-for parameters when TDRSS tracking measurements

are processed. When a parameter is chosen to be a solve-for parameter, the partial deriva-

tive of the measurements with respect to this solve-for parameter is required for the

estimation process.

7.3.3.1 Range Measurement Partial Derivatives With Respect to the Position

Vectors

The partial derivatives of the range with respect to the position vectors depend on the

identity of each node and on the type of range measurement. The position vectors can

include the spacecraft state vector, TDRS state vectors, and tracking station and ground

transponder locations.

Generally, the partial derivative of a range measurement with respect to the epoch state of

a node can be expressed as

0o(T) 0o(T) 0 j(tj)
= (7-60a)

0 j(to) 0X]j(tj) 0_j(to)

or

00(T) = 00(T) 4_j(tj, to) (7-60b)
0_j(to) 0_j(tj)
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Table 7-1. TDRSS Solve-For Parameters

TYPE SOLVE-FOR PARAMETERS

Dynamic solve-for parameters
for user spacecraft

Dynamic solve-for parameters
for TDRS spacecraft

Static solve-for parameters

State vector

Aerodynamic drag parameter

Solar radiation reflectlvity coefficient

Gravitational model parameters

Powered flight parameters (thrust)

State vector of the first TDRS

Solar radiation reflectivlty coefficient of the first TDRS

State vector of the second TDRS

Solar radiation reflectivlty coefficient of the second TDRS

State vector of the third TDRS

Solar radiation reflectlvity coefficient of the third TDRS

Transponder delays

Measurement biases

Timing biases

Tracking station and ground transponder geodetics

where

0(T) =

 (to) =

 (tj) =
(tj, to) =

computed range measurements at time tag T

state vector (position and velocity) of node j at epoch, to

instantaneous state vector of node j at time tj

0_(tj)/0_(to), the state transition matrix of node j from time tj
to to

The time to is the epoch of the estimated solution. For a differential correction estimator,

to can be set equal to any time that is in or near the timespan covered by the data.

7-31



7.3.3.2 Partial Derivatives of Hybrid Relay Range Measurement With Respect to

the Position Vectors

For a hybrid relay range measurement, all five associated nodes are different. Using

Equations (7-54) and (7-60), the partial derivatives with respect to the instantaneous posi-

tion, g, and velocity, r, of each node are computed as follows:

a0(T) 1 ^
0gs(t5 = T) = 2 u4 (for receive station) (7-61a)

a0(T) 1
Or-4(t4) 2

(u3 - _4) (for return-link TDRS) (7-61b)

(for target, either
00(T) _ 1 (_2 - _3) user spacecraft or (7-61c)

Or-3 (t3) 2 ground transponder)

a0(T) 1
- (_1 - _2) (for forward-link TDRS) (7-61d)

Ot-z(tz) 2

Oo(T) 1 ^
- u 1 (for transmit station) (7-61e)

Orl(tl) 2

0o(T) - 0 (J = 1, 2, 3, 4, 5) (7-61f)

O _ (tj) (for all nodes)

where _j, the unit vector along the leg between nodes j and j + 1, is given by

^ _+a - gl (7-62)
uj -- IVm _ _1

7.3.3.3 Partial Derivatives of Two-Way Relay Range Measurement With Respect to

the Position Vectors

Essentially, Equations (7-61) can be used to evaluate the partial derivatives of two-

way relay range measurements with respect to the position vectors. However, certain
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simplifications can be made because nodes 1 and 5 (transmit and receive stations) are

identical and nodes 2 and 4 (forward-link and return-link TDRS) are the same. In calcu-

lating partial derivatives, rl is replaced by rs, whose variations closely approximate those

of rl. Similarly, r2 is replaced by r4. The velocity vectors /.1 and i'2 are similarly re-

placed by /'5 and /'4, respectively.

Equations (7-61) can be simplified to evaluate the derivatives of a two-way relay range

measurement with respect to the instantaneous position, t-, and velocity, r, of each node

as follows:

0o(T) 1
= -_-(_4- Ul) (for station) (7-63a)

A AO0(T) = 1 (___11 _ u2 + 1-13 _ u4) (for TDRS) (7-63b)

0F4(t4) 2

ao(x) 1
_) = __ (_az _ (a3) (for target) (7-63c)

O0(T) = 0 (J = 1, 2, 3, 4, 5) (7-63d)

O_ (tj) (for all nodes)

7.3.3.4 Partial Derivatives of One-Way Relay Range Measurement With Respect to

the Position Vectors

A one-way relay range measurement actually does not exist in TDRSS. It is included here

mainly to lay a foundation for modeling the one-way relay Doppler measurement and the

differenced one-way relay Doppler measurement (described in Section 7.3.4). For a one-

way relay measurement, there is no node 1 or node 2. The computed range will be

o(v)--
j=3

It]j+, - rjl + c Dt (7-64)
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The transponder delay of node 3 is not relevant. The partial derivatives of one-wayrelay
range with respect to the instantaneousposition and velocity of each node are

0o(T) 1 ^

OFs(ts) = 2 u4 (for receive station) (7-65a)

Oo(T ) 1

_) = _ (_3 - _a4) (for return-link TDRS) (7-65b)

00(T) 1 ^
- u3 (for target) (7-65c)

0r3(t3) 2

0_(T) _ 0 (J = 1, 2, 3, 4, 5) (7-65d)
O_(tj) (for all nodes)

7.3.3.5 Partial Derivatives of Short Range (Coherent Range) Measurement With

Respect to the Position Vectors

As described in Section 7.3.1.1, the phase relationship of all the Doppler measurements

in TDRSS is maintained by transmitting a coherent Doppler signal from the receive sta-

tion to the return-link TDRS and mixing it with the Doppler signal retransmitted by the

target. Modeling of the Doppler measurement will be described in Section 7.3.4. The

computation of the partial derivatives of the short range (coherent range) that will be used

later in modeling the Doppler measurement is included here for completeness, although

the short-range measurement does not exist in TDRSS. The computed short range is

1

0(T) = _-(If-5 - r-4l + IF4 - t-6l + c • D4) (7-66)

Since node 6 is identical to node 5, the partial derivatives of the short range with respect

to the instantaneous position and velocity of each node are

aO(T) 1
OFs(ts) 2

(_a4 - _5) (for receive station) (7-67a)
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00(T)
0ff4(t4)

1
= (fi5 - fi4) (for return-link TDRS) (7-67b)

00(T)

on(tj)

0=1,2,3)

= 0 (for target, forward-link (7-67c)
TDRS, and transmit station)

0o(T) = 0 (J = 1, 2, 3, 4, 5) (7-67d)

0_(tj) (for all nodes)

A
where the unit vector, u 5, of the fifth leg (see Figure 7-1) is given by

^ F4 - t-6 (7-68)
U 5 - I_, - _61

7.3.3.6 Range Measurement Partial Derivatives With Respect to Transponder Delay

From Equations (7-53) and (7-54), the partial derivative of the range measurement with

respect to transponder delay is

00(T) 1

0Dk 2 t 2
j=l

1 0Oj
+

2 0tk

j=l

(7-69a)

or

a0(T)
ODk

1 _

j=l

(7-69b)

7-35



where

00j = c (1 0tj .'] (7-70a)
Oq+l Otj+lJ

otj c-
m

OtJ+1 C- (_lj _j)

(7-70b)

7.3.3.6.1 Partial Derivative for Transponder Delay at the Forward-Link TDRS

Since this delay only affects the positions of node 2 and node 1 from a backward tracing

(see Figure 7-5), using Equations (7-69b) and (7-54) gives the partial derivative of the

half-range measurement with respect to the transponder delay at the forward-link TDRS,

as follows:

00(T)-0D2 21( c 0Ol/_22J (7-71a)

where

001 O

0t2 Ot2

A
U l (_2 -- _'1)

IF2 - FII = 1 (7-71b)
1 -

C

and _1 is the unit vector of _-1.

7.3.3.6.2 Partial Derivative for Transponder Delay at the Target (User Spacecraft or

Ground Transponder)

Transponder delay at the target is associated with node 3, thereby affecting the positions

of node 3, node 2, and node 1 by backward tracing. Using Equations (7-69b) and (7-54),

the partial derivative of the range measurement with respect to the target transponder

delay is given by

O0(T), I[ (002 oo,/1 _7-7_)0D3 2 c- [-_3 + -_3)J
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x .__

where

002 (3

0t3 0t3

Au_ (r_ - r_)
It-3 - t-2] = (7-73a)

1 - 1(_2 r2)
C

OOa O

Ot3 Ot3
I_-r-ll-- ul (r2-r,) 1 (7-73b)

1 - l(_ __) c _T3J
C

The last equation was derived using the chain rule and the identity

0t--! = 1 - i O0--Z2 (7-74)
0t3 c 0t3

which is deduced from the range equation (Equation (7-48)).

7.3.3.6.3 Partial Derivatives for Transponder Delay at the Return-Link TDRS

Since this delay is associated with node 4, it will affect the position of nodes 4, 3, 2, and

1. The partial derivative of the range measurement with respect to the transponder delay

of the return-link TDRS is

[ ae"]l (7-75)
O0(T) 1 (003 002 +

0D4 = 2 c- _.-_-4 + Ota -_-4JJ

where

003

0t4

Au_ G - 6)

1- !(01, r3)
C

(7-76a)

_2 (1"3- _)(1 1 0[93]__ l(_ _.) c _)
C

(7-76b)
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{901 = _al (r2 - _)(1 1 803 1 0{}2"_
Ot4 1- 1--(_ 1 gl) C Ot4 C _4"J (7-76C)

c

For all practical cases, 00j/Otk is negligible when compared with the speed of light in

Equations (7-71a), (7-72), and (7-75). Therefore, the following formula is used for each

node:

a0(X) c
0Dk = (7-77)

7.3.3.7 Range Measurement Partial Derivatives With Respect to Other Systematic
Biases and Uncertainties

The partial derivatives of range measurements with respect to measurement biases, tim-

ing biases, and nonstate dynamic solve-for parameters are discussed in this section.

7.3.3.7.1 Measurement Biases

Measurement biases, B, that are specific to a given type of measurement, Oc, and to a

given receive station, can be applied and solved for. As is true for all these biases, the

partial derivative with respect to a TDRSS measurement bias is unity:

aOdT)
OB

- 1 (7-78)

7.3.3.7.2 Timing Bias (Time Tag Error)

The actual receive time, tz, of a signal at the receive station (node 5) can differ from the

measured receive time (i.e., the time tag T of the measurement) due to a clock bias, ta,

as follows:

ts = T + tB (7-79)

The partial derivative of the measurement with respect to the timing bias (time tag error)
is

00_ 00¢
= (7-80)

0tB Ot5
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For a range measurement,

Oc = 0(T) = _ 0j + c

j=l k=2

(7-81)

Since

Qj = c(tj+_- tj) = I_+, - _1 (7-82)

then

Otj+l Otj,l)
(7-83)

where

0tj C- (fij _j+l)

0tj,, c- (_j _)

(7-84)

Therefore, the partial derivative of a range measurement with respect to the timing bias is

aO(T) a0(T) 1
0tB 0t5 2

4

0oj0ts
j=l

4

0g,jt ,)J
j=l

(7-85)

where the subscript i indicates the initial node of the measurement (i = 3 for one-way and

i = 1 for two-way or hybrid).
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7.3.3.7.3 Nonstate Dynamic Solve-For Parameters

The partial derivative of the measurement Oc with respect to a dynamic solve-for pa-

rameter, s, is calculated by the equation

OOc _ OOc Oxj

Os - /7 Oxj Os (7-86)

J

where the sum is over all spacecraft involved in the measurement, in principle. Because a

solve-for parameter, such as the coefficient of solar reflectivity, may be specific to an

individual spacecraft, only one term of the sum may be nonvanishing, and only one dot

product needs to be calculated.

Some of the solve-for parameters listed in Table 7-1, such as the coefficients of solar

reflectivity for the TDRSs, do not involve the target spacecraft. Other solve-for parame-

ters are treated as being specific to the target spacecraft. That is, in updating the estimate

of such solve-for parameters, only the effect of these parameters on the target spacecraft

is considered, and the partial derivative calculated is simply

OOc = OOc O_'target (7-87)
OS 0X-target OS

Thus, only one term of the sum is calculated for any of the nonstate dynamic solve-for

parameters.

7.3.4 MODELING OF DOPPLER AND DIFFERENCED DOPPLER

MEASUREMENTS

In this section, TDRSS Doppler measurement modeling in the nondestruct mode is dis-

cussed. The basic derivation and its application to two-way Doppler measurement model-

ing can be found in Reference 7.
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The Doppler-shifted carrier frequency via the long-trip path (i.e., from node 1 though
nodes 2, 3, and 4 to node 5) is

C

(7-88)

where

vt

(Vo)t

et

= Doppler-shifted carrier frequency via the long-trip path

= unshifted radiated carrier frequency via the long-trip path

= time rate of change of long-trip full range

Equation (7-88) is also valid for one-way Doppler measurements, except that in this case,

Ot = 03 + 04
(7-89)

The phase of the Doppler signal is maintained by transmitting a coherent pilot-tone fre-

quency to the return-link TDRS. The frequency is also Doppler-shifted, as follows:

C
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where

V$

(Vo),

o,

= Doppler-shifted pilot-tone frequency for the short-trip path (i.e., from
node 6, through node 4, to node 5)

= unshifted pilot-tone frequency

= time rate of change of the short-trip full range

These two Doppler-shifted frequencies are mixed according to a certain ratio in the

transponder of the return-link TDRS to produce the observed Doppler shift

va = [avt + b v$] - [a (Vo)t + b (Vo)s] (7-91)

where a and b are hardware-related constants.

Substituting Equations (7-88) and (7-90) into Equation (7-91) and rewriting in terms of

range differences, Apt and AQs, over the Doppler counting interval, AT, the measured

Doppler shift can be expressed as

va¢(T) = ---I(A bt + B 0$) = 1 [AA0t(T ) + BAos(T)] (7-92)
c c At

where

vdo(T)

A

B

Ape(T)

AOs(T)

= computed average Doppler shift tagged at time T

= a (Vo)t

-- effective transmit frequency from the user

= b (Vo)t

= pilot-tone frequency translation from the return-link TDRS

= or(T) - ot(T - AT)

= difference between the full long-path range at times T and T - AT

= os(T) - o,(T - AT)

= difference between the full short-path range at times T and T - AT

The effective transmit frequency from the user must be retrieved from the tracking data.

The values of the pilot-tone frequency translation, which are listed in Table 7-2, depend

on both the return-link access-service type and the frequency band of the link.

J
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The previously calculated long- and short-path ranges for a configuration can be saved.
This provides substantial savings in computation time whenever the Doppler counting
interval is equal to the time betweenmeasurements, in which case the previously saved
rangesat T - AT and the currently computed ranges at T are used directly to model a
Doppler measurementaccording to Equation (7-92).

Table 7-2. Value of Pilot Tone Frequency Translation, B, Applicable

to Determination of TDRSS Average Doppler Shift

RETURN-LINK SERVICE ID

SA1 (single access)

SA2

SA1

SA2

MA (multiple access)

FREQUENCY BAND

K-band (14 GHz)

K-band

S-band (1.5 GHz)

S-band

S-band

B (MHz)+, =,_

-1475.0

-1075.0

13677.5 -INT[2A + 0.5]/2.0

13697.5 -INT[2A + 0.5]/2.0

-2127.5

NOTES:

1. Values of B may be subject to change

2. The parameter A Is the effective transmit frequency from the target spacecraft

3. INT [ ] means truncate to closest Integer

Units: GHz = glgahertz
MHz = megahertz

7.3.5 PARTIAL DERIVATIVES OF DOPPLER MEASUREMENTS WITH RESPECT

TO SOLVE-FOR PARAMETERS

If the Doppler measurements are to be used for the estimation of any solve-for parameter,

the partial derivatives of the Doppler measurements with respect to the solve-for parame-

ters must be computed.
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7.3.5.1 Doppler Measurement Partial Derivatives With Respect to the Position
Vectors

Although the partial derivatives of Doppler measurements with respect to the position

vectors depend on the identity of each node and on the type of Doppler measurement,

they can be expressed in the general form

ore(a9 aVe(a9
0 (to) 0 (tj)

• j(tj, to) (7-93)

where

Vdfr)
Xj(t0)
X#j)
 (tj, t0)

= computed full Doppler measurement at time tag T

= state vector (position and velocity) of node j at epoch, to

= instantaneous state vectors of node j at time tag tj

= state transition matrix of node j from tj to to

where to is equal to any time that is in or near the data span for a batch differential

corrector.

Substituting Equation (7-92) into Equation (7-93) produces

ave(a9 _ 1 [A aOt(T)
0_(to) c ATL am(tj)

+ B O0_(T).]
O_j(tj) _[ _ (tj, to)

1 [A O0(T- AT) 00_(T- AT).]+ _ _ _ + B O_j(tj AT) J _(tj-AT' to)

(7-94)

All the range partial derivatives in brackets are described in Section 7.3.3 for all nodes,

except that they should be multiplied by a factor of 2 because Qt and Qs are the full

round-trip ranges (not the half-trip ranges used in the range measurement modeling).

These derivatives are evaluated at the current time tag, T, and at the time T - AT, where

AT is the counting interval for the nondestruct Doppler frequency.

The range partial derivatives at the previous time tag can be saved and then used in the

computation of the Doppler partial derivatives if the previous time tag is equal to

T - AT, which is the start time of a Doppler count. Otherwise, all the partial derivatives
must be evaluated at both T and T - AT.
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7.3.5.2 Doppler Measurement Partial Derivatives With Respect to Transponder

Delay

Using Equation (7-92), the partial derivative of the Doppler measurement with respect to

the transponder delay can be expressed as

[ 0A0t(T) 0A0_(T)Iavd(T) = 1 A + B

0Dj c AT L 0Dj 0Dj J

1 {[Aa0t(T)- +B a0_(T)-Ic AT ODj _jj "J

aos(T- AT)

cAT (-1) A-Otj + B _jj J

+ [A 0pt(T-0tj AT) + B ¢90_(T--Otj AT)] }

(7-95)

where (0Ot/0tj) and (O0s/Otj) can be evaluated for both the current time tag, T, and the

previous time tag, T - AT, by Equations (7-71b), (7-73), and (7-76) for transponder

delays associated with the forward-link TDRS, the target, and the return-link TDRS, re-

spectively. If the transponder delay is associated with the forward-link TDRS or the target,

0Qs/atj will be zero because the short-path full range is only associated with the return-

link TDRS.

7.3.5.3 Doppler Measurement Partial Derivatives With Respect to Other Solve-For

Parameters

The partial derivatives of Doppler measurements with respect to a measurement bias are

unity, as shown in Equation (7-78). For a timing bias, the partial derivatives of both the
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long-path and the short-path (coherent mode) ranges must be evaluated at two points in
time, as follows:

-[A OAot(T) + B aA0s(T)-]
0va(T) 0tB 0tB /

0tB C AT

c AT k 0tB
00t(T- AT).] (7-96)

_1

+ B [ -00s(T)

k otB

where OOdOt B and 0Os/0t B can be evaluated by Equations (7-83) and (7-85) with a multi-

plication factor of 2, since Pt and Os are full ranges.

For other nonstate dynamic solve-for parameters, the general form of the partial deriva-

tives of the Doppler measurements is similar to Equation (7-86).

7.3.6 FORMULATION OF DIFFERENCED ONE-WAY DOPPLER

MEASUREMENT AND ITS PARTIAL DERIVATIVES

The differenced one-way Doppler measurement is defined as

Ava(T) = vo(T) TDRsc°mparis°n - va(T)[ TDRSreference (7-97)

The partial derivative of a differenced one-way Doppler measurement with respect to any

solve-for parameter, s, can be generalized and written as

0Avd(T) 0va(T) 0va(T)

aS - 0S ] c°mparis°nTDRSaS ] referenceTDRS (7-98)

where the values of Ova(T)/Os for both comparison and reference TDRSs can be evalu-

ated by utilizing Equations (7-94) through (7-96).

7.3.7 TDRS RADIO FREQUENCY (RF) BEAM ANGLES MEASUREMENT

MODEL

The TDRS radio frequency (RF) beam angles are the azimuth and elevation of the TDRS

return link to either the multiple-access (MA) antenna or a single-access (SA) antenna,
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measuredin a TDRS vehicle-fixed coordinate system.The TDRS spacecraftvehicle-fixed
coordinate system is a right-handed, orthogonal coordinate system centeredat the TDRS
center of mass, such that the position componentsare the following:

Xb = along the north-south slew axis of the SA antennas,positive east
when the TDRS is on station

Yb = along the solar array panel rotation axis, positive south when on
station

Zb = perpendicular to Xb and Yb, positive towards the Earth subsatellite
point

The beam angles are the following:

AZ =

EL =

azimuth, measured in the Xb- Zb plane, from the Zb axis to the
projection of the P unit vector (defined below) in the Xu- Zb plane

elevation, measuredas the elevation of the TDRS return link
above (positive in the -Yb direction) the Xb- Zb plane

A

In addition, the unit vector along the TDRS return link, P, is known as the spatial beam

vector when rotated to TDRS track-oriented coordinate frame.

The TDRS vehicle-fixed coordinate system and the beam angles are illustrated in Fig-

ure 7-6.

To obtain the measured spatial beam vector, the computational steps described below are

followed.

1. The unit vector (Xb, Yb, Zu) for RF beam pointing in TDRS vehicle-fixed coordi-

nates is computed as follows:

Xb = cos (EL) sin (AZ) (7-99a)

Yb = - sin (EL) (7-99b)

Zb = cos (EL) cos (AZ) (7-99c)
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Figure 7-6. Definition of the TDRS Vehicle-Fixed Coordinates

and RF Beam Angles

,

A

The measured spatial beam vector, Po, is computed in the track-oriented frame by

rotating the unit vector for the RF beam pointing through the roll, pitch, and yaw

angles (0, O, _0) to the TDRS track-oriented system as follows:

-1kJr136 Frll r12 Xb

Po =]r21 rz2 r23 Yb (7-100)
[_r3a r3z r3_ Z
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where

ral = cos 0cos 7; - sin 0sin_b sin 7; (7-101a)

r12 = -cos $ sin 7; (7-101b)

r13 = sin 0 cos 7; + cos 0 sin 4} sin _ (7-101c)

r21 = cos 0 sin_p + sin 0 sin$ cos _p (7-101d)

r22 = cos _ cos _0 (7-101e)

r23 = sin 0 sin _p - cos 0 sin $ cos _ (7-1010

r31 = - sin 0 cos $ (7-101g)

r32 = sin q_ (7-101h)

r33 = COS 0 COS _b (7-101i)

A

The computed spatial beam vector, Pc, and the computed AZ and EL angles, are ob-

tained using the computation steps described below.

. The unit vector from the return-link TDRS to the user spacecraft or transponder is

computed in inertial coordinates as

^, t-s - _-T (%102)
Pc - Its - gTI

where

t-T = position vector of the return-link TDRS at the measurement time

t-s = position vector of the user spacecraft or transponder at the
measurement time

.
^' the TDRS track-oriented coordinates to obtain theThe unit vector Pc is rotated to^

computed spatial beam vector, Pc.
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The TDRS track-oriented coordinate axes (_T, _T, _T) are defined as follows:

ZT^ = fr (7-103a)
IrTI

A fT X _'T (7-103b)YT =
IrT x

A A A
XT = YT x ZT (7-103C)

A r

The transformation of the unit vector Pc, expressed in inertial coordinates, to the

TDRS track-oriented frame is then given by

^ ^' (7-104)Pc = RTPc

where

FA_ A A A A il

T X X T Y X T Z

YA ^ A ^ (7-105)
RT = T X YT Y YT

A A A A

LZT X Z T Y Z T

.

.

A A A

where X, Y, and Z are unit vectors along the inertial coordinate axes.

The (Xb, Yb, Zb) components of the unit vector for RF beam pointing are computed
^

by rotating Pc through the measured yaw, pitch, and roll angles. This is the inverse

of the rotation given in Equation (7-100).

The measured AZ and EL angles are computed by inverting Equations (7-99) using
A A ^

the values of (Xb, Yb, Zb) from step 3.

The spatial beam angle observed-minus-computed (O-C) value, [O-C], is deter-

mined from

[0 - C] = arccos (Po P¢) (7-106)

7-50



where

A

Po = measured spatial beam vector
A

Pc = computed spatial beam vector

7.4 RADAR ALTIMETER MODEL (Not Currently Available in GTDS)

GTDS models the satellite's orbital state vector in inertial coordinates. However, the radar

altimeter measures the height of the satellite relative to the actual sea surface at the

subsatellite point. Thus, the measurement modeling must relate the inertial coordinates to

the actual sea surface height. This is accomplished by expressing both the satellite's posi-

tion and the sea surface in body-fixed coordinates, xb, Yb, and Zb. The following subsec-

tions discuss the surface model, the measurement equation, and the associated partial

derivatives.

7.4.1 SURFACE MODEL

The sea surface is primarily determined by the Earth's gravity potential, which is the sum

of the gravitational potential and the potential of the centrifugal force resulting from the

Earth's rotation. A particular equipotential surface of the Earth's geopotential field, called

a geoid, passes through the mean sea level surface and is nearly spherical, with flattening

at the poles and a pear-shaped bulge in the southern hemisphere. The geoid approximates

very closely (within a meter or two) the real sea surface in ocean areas. Small static and

dynamic differences between the instantaneous sea surface and the geoid are caused by

currents, tides, and weather phenomena. Typical magnitudes of these deviations (Refer-

ences 8 and 9) are presented in Table 7-3. Since complete information is unavailable for

modeling these small effects, they are neglected in the radar altimeter model.

A reference surface is utilized that is conveniently chosen to be a rotationally symmetric

ellipsoid that best fits the geoid in a least-squares sense. The maximum distance between

this ellipsoid and the geoid is approximately 100 meters. This ellipsoidal surface also

represents an equipotential surface of the normal geopotential, which includes (in addi-

tion to the point-mass term) even zonal harmonic coefficients, of which only C o and C o

are significant. As a result, the sum of the additional terms needed to fully describe the

geopotential (i.e., the disturbing potential) is small (Reference 10).
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Table 7-3. Sea Surface--Geoid Deviation Sources

SOURCE TYPICAL MAGNITUDE

Sea swell

Wind waves

Storm surges

Barotroplc depressions

Currents

Tides

1 meter

1 meter

10 centimeters

10 centimeters

1 meter

1 meter

Figure 7-7 shows an exaggerated cross section of the geoid and the reference ellipsoid.

The distance measured along the normal to the reference ellipsoid from point Q to the
....... A

point P on the geo_d _s called the gemdal undulanon and _s des=_nated by U. The vector n
is the unit vector perpendicular to the reference ellipsoid, and _i'is the unit vector perpen-

dicular to the geoid.

POLE n _'

O OULATION
_ _ GEOID

U __FERENCE ELLIPSOID

Figure 7-7. Geoid Undulation

Expressing the geopotential function, _, as the sum of the normal geopotential, _N, and

the disturbing potential, _o, yields

_(r, ¢', 2) = _N(r, ¢', ,t,) + _OD(r, ¢', 2) (7-107)
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where, from Section 4.3,

_N(r, _', _,) = _ + _ Co _(sin _') + CO _(sin _b') (7-108)
r r

and

WD(r, _', 2) = _ AC o P°(sin
r

oo

11=2
n_2,4

oo n

n=2 m=l

pm(sin _b') [S TM sin rn)l + C TM cos rrd]

In these equations,

r = geocentric radius

¢' = geocentric latitude

A. = longitude

Re = Earth's equatorial radius

The geopotential function (the sum of the normal geopotential and the disturbing poten-

tial) differs from the gravitational potential in that it includes a term that represents the

centrifugal potential due to the Earth's rotation. This term is included in the second zonal

harmonic coefficient. Furthermore, the C o term in the normal geopotential is a function

of C o , whereas C o and C o are not functionally related in the gravitational potential. Con-

sequently, AC ° and AC ° are included in Equation (7-109) to account for these differ-

ences.
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To evaluate the magnitude of the geoidal undulations, the geoid of potential _o is com-
pared with the reference ellipsoid of the samepotential _PN(Q)= _0. The normal poten-
tial _(P) at P can be approximated by the linear relationship

w.(P)= W.(Q)+ u = - r(Q)u
k a_ Jo

(7-110)

where ),(Q) is normal gravity, i.e., the magnitude of the gradient of the normal geopoten-

tial on the reference ellipsoid at the point Q, where the algebraic sign is consistent with

geodetic convention.

By definition,

_(P) : _N(P) + _'D0 a) (7-111)

and

_(P) = _2o = _N(Q) (7-112)

Substituting Equations (%111) and (7-112) into Equation (7-110) yields Brun's Formula

(Reference 10) for the geoidal undulation

U = _o(P) (7-113)
y(O)

The geoidal undulation U is a function of the disturbing potential at the point P and

normal gravity 7 at the point Q. However, frequently the coordinates of the point Q are

known but not those of point P. In this case, evaluation of the disturbing potential _PD at

Q instead of P will cause only a small error in the calculation of U.

A better approximation for the disturbing potential, _D(P), can be obtained by correcting

the geocentric radius, r, by the undulation U, calculated as described above. This value

can then be used in Equation (7-113) to obtain a better value of U. Standard (normal)
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gravity, which is the gradient of the normal potential _PN,is derived as a function of
geodetic latitude and equatorial gravity in Reference8, yielding

7 = ye(1 - f2 sin q_ + f4 sin4 _) (7-114)

where

5 lf2 26 15 m2 (7-115a)f2 = - f + --m + - _f m + --
2 2 7 4

_ 5f (7-115b)f4 = --lf 2 + m
2 2

m + 3m2 - 0)2 Re (7-115c)
2 ye

----_ and

_e

O9

0

f

normal equatorial gravity, which is 978.049 centimeters/second 2 for the

International Ellipsoid

Earth's rotation rate = 0.72921151 x 10 -4 radians/second

= geodetic latitude

= flattening of the reference ellipsoid; f = (a - b)/c, where a and b are the

semimajor and semiminor axes, respectively, of the reference ellipsoid

The value of m is obtained iteratively from the expression

if22 Re 3 2 (7-116)mn - mn-1
Ye 2

starting from mo = 0.00344986.
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The normal geopotential field and the normal gravity field of the reference ellipsoid are

determined by four constants, usually chosen to be the following:

a --- semimajor axis of the reference ellipsoid

f -- flattening of the reference ellipsoid

_'e = equatorial gravity

to = Earth's angular speed of rotation

The flattening f of the reference ellipsoid of revolution and the values of C O for the

spherical harmonic expansion of the normal potential are directly related. Thus, C O can

be used instead of f as one of the four constants.

7.4.2 MEASUREMENT EQUATION

Ideally, the radar altimeter measures the minimum distance from the spacecraft to the sea

surface, which is equivalent to the distance from the sea surface to the spacecraft meas-

ured normal to the sea surface. Since the sea surface is closely approximated by the

geoid, the geoid is a convenient reference surface for altimetry. However, the present

global mathematical models of the geoid are not accurate in fine detail. In the remainder

of this section, the term geoid will denote the mathematical model of the geoid repre-

sented by means of a spherical harmonic expansion.

The minimum distance from the geoid to the spacecraft is indicated by the line segment

OP in Figure 7-8. Solving for this distance is difficult because of the complicated form of

the equations for the geopotential. Therefore, an approximation to the distance H is made

by using the length H'of the line segment OP'along the normal to the reference ellipsoid

passing through the spacecraft.

The spacecraft position is assumed to be known in Earth-fixed Cartesian coordinates,

Xb, Yb, and Zb, by transforming from inertial to body-fixed coordinates using the meth-

ods of Section 3.3.1. The geocentric latitude, _', the longitude, 2, and the magnitude,

rb, of the position vector to the spacecraft are given by

tan'L +y]tp' Zb (7-117)

2= tan -1 [Y-_-b] (7-118)
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Figure 7-8. Geo;a Geometry

and

rb = _/X2b + yZb + Zbz (7-119)

to the subsatellite point on the referenceThe geodetic latitude, $, and the altitude h' S'

ellipsoid are obtained from Section 3.3.6 as

[ ]'Zb 1 N (2f - f2) (7-120)
tan q_ - _/x_ + ybz (N + h')
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where

N

Re

_/1 - (2f- f2) sin2_
(7-121)

and

h' = _/x_ + y_ N (7-122)
COS

Equations (7-120), (7-121), and (7-122) must be solved iteratively.

The geoidal undulation U' at S' is obtained from Brun's Equation, Equation (7-113),

(where gPD(P) is given in Equation (7-109) and y(S') is given in Equation (7-114)) and, if

necessary, using the procedure described in Section 7.4.1 to obtain the required precision.

Then, the resulting approximation for H is

H --- H' = h'-U' (7-123)

7.4.3 PARTIAL DERIVATIVES

Partial derivatives of the measurement are determined by transforming the measurement

partial derivatives with respect to body-fixed coordinates to partial derivatives with re-

spect to inertial Cartesian coordinates as described in Section 7.2.2. The partial derivative

of H with respect to fb is transformed to a partial derivative with respect to R as fol-
lows:

OH OH 0R OH
m

OR 0gb OR 0fib
(7-124)

The partial derivative of H in Equation (7-124) involves numerous higher order terms

because of the dependence of the location of P' (Figure 7-8) on the undulation U'and the
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coordinates xb, yb, and Zb. However, these effects can be neglectedto first order. The
partial derivative of H with respect to fb is therefore approximated as

OH = Oh--= _h"T (7-125)

Ot-b Orb h'

where

X b - Xil

h' = Yb Y (7-126)

Z b Z

Equation (7-125) is exact for a spherical geoid.

7.5 VERY LONG BASELINE INTERFEROMETER (VLBI) MODEL

(Not Currently Available in GTDS)

The Very Long Baseline Interferometer (VLBI) System records signals transmitted by a

satellite, along with timing signals from a local atomic clock, at two or more ground

stations. The presence at each station of accurate atomic clocks, which can be coordinated

by comparison with portable clocks dispatched between stations, means that the signals

from the satellite recorded at each station can be time correlated with great precision. The

ground stations measure phase differences between simultaneously received signals trans-

mitted by the spacecraft.. The measurable data are a phase difference time interval, 3,
and its time derivative, 3. The time difference, 3, is the difference in the spacecraft

range as measured from each of the ground stations on a given baseline, divided by the

speed of light, c. Neglecting atmospheric effects, the time difference between reception of

the same wavefront or phase at the first and second stations is

1 1[ ] (7-127)r = --(0a - 02) = c IVat'(t)[ - IVat2(t+ 3)1
C

where _)1 and 02 are the ranges from the first and second stations to the satellite, respec-

tively. The range vectors t-1h and rlt 2 are evaluated in the local tangent plane system
centered at the first and second stations, respectively. An iterative procedure is required

to determine 3, since the actual light time between the satellite and the station is not

known initially. The iteration is initiated by assuming that r is zero on the right-hand side

of Equation (7-127).
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The time-rate (Doppler) difference, i', is the difference in the spacecraft range rate as
measured from each station, divided by c, i.e.,

= 1 •
i" c(pl- _92)= 1{[ _tl(t) 01_tl(t)]-[_t_(t + r) 02_tz(t + r)])(7-128)

The partial derivatives of r and r with respect to the epoch state vector components and

dynamic model parameters are given by

Or = l_001(t! O_n(t)OR(t)

O_- c I O_n(t) OR(t) O_

002(t') Of-n(t') OR-(t')]
+

0f, t(t') 0R(t') 0_ 1

(7-129)

0r 1 [001(t) 0fn(t) 0R(t)
= c [ 0Fat(t) 0R-(t) 0_-

001(t) F0rl_(t)0R-(t) 0rlh(t ) 0_-(t)]
+ 0rn(t) k 0R(t) 0g + 0_(t) 0g

0bz(t') 0t-at(t') 0R(t')

0fn2(t') 0N(t) 0ff

(7-130)

where t' = t + r

The partial derivatives 0R-(t)/0g and 0_-(t)/O_ are obtained from solutions to the varia-

tional equations; the partial derivatives Ofn(t)/Og(t), 0rlt(t)/0R-(t), and 0rlt(t)/0g(t) are

presented in Section 7.2.2; and the partial derivatives of 0 and 0 with respect to their

respective station-centered local tangent plane coordinates are given in Sections 7.2.3.2

and 7.2.3.3.

7.6 ATMOSPHERIC EFFECTS

All satellite radar tracking measurements from ground tracking stations are affected

by the propagation characteristics of electromagnetic radiation through the Earth's
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atmosphere. The bending, or refraction, of the rays means that a measurement of the
direction of the signal propagation at the ground does not correspond to the direction of
the relative position vector betweenthe spacecraft and the tracking station. This ray bend-
ing also requires that the interpretation of the Doppler-shift measurementmust be based
on the projection of the appropriate velocity along the local propagation path direction,
not along the relative position vector. Sincethe local propagationspeedin the atmosphere
is different from the vacuum speed,the interpretation of time-delay measurementsmust
account for this effect.

In principle, the refraction effects can be characterized in terms of the variable local
index of refraction, n, of the medium through which the signal is propagated. It is as-
sumed in the correction algorithms that locally the atmosphere is spherically symmetric
with respectto the centerof the Earth; therefore, n varies only with the altitude, h (meas-
ured radially), at eachtracking station. However, the n-versus-hprofile is determined as a
function of the station location and the variations in solar flux. The nature of these de-
pendencies is discussed in the following sections, which present the mathematical algo-
rithms characterizing the three basic refraction effects considered.

7.6.1 TROPOSPHERE MODEL (References 11 and 12)

The troposphere is the familiar gaseous atmosphere, which extends from the Earth's sur-

face upward to a sensible limit of about 30 kilometers. For the microwave frequencies of

interest in spacecraft tracking, the troposphere is essentially a nondispersive medium, i.e.,

the index of refraction, n, is independent of the frequency of the signal transmitted

through it. Within this region, n is expressed as

n = 1 + NT (7-131)

where the tropospheric refractivity, NT, depends only on the thermodynamic properties of

the air. Since temperature and pressure data are not readily available at altitude, surface

data are used to compute the surface refractivity, Ns, and an exponential decay with

altitude is assumed, as follows:

NT = Ns e -(h-hs)/Hr
(7-132)

where hs and Ns are the altitude and refractivity at the tracking site, respectively, and

HT is the tropospheric scale height, i.e.,

1 fh_ NT(h) dh (7-133)
HT- Ns ,
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The National Bureau of StandardsCentral Radio Propagation Laboratory (NBS CRPL)
gives values of the scale height for different values of the surface refractivity. Refer-
ence 11 stressesthe importance of using corresponding values of Ha-and N,. (Some
formulations have fixed Hr at a standardvalue, allowing only Ns to vary.) Computation
of the tropospheric corrections is discussedin detail in Sections 7.6.3 and 7.6.4.

7.6.2 IONOSPHERE MODELS (References 13 through 17)

Above the troposphere is another atmospheric region called the ionosphere, consisting of

ionized particles and extending from about 80 kilometers to beyond 1000 kilometers. The

index of refraction, n, is less than 1 in this dispersive medium, and it is expressed rigor-

ously in terms of the ionospheric refractivity, NI. For the sign convention chosen, the

ionospheric refractivity N_ is greater than 0 and

n 2 -- 1 - 2Nx (7-134)

The difference from unity is small; and to first order in the refractivity N_,

written in a form analogous to that for the troposphere as follows:

n can be

n = 1 - NI (7-135)

The refractivity depends on the electron density, Ne (in electrons/meter3), and the signal

frequency, v (in hertz), according to

40.3Ne (7-136)
N I = V2

The electron density profile for the ionosphere reaches a maximum value, Nm, at altitude

hm, decaying to zero very rapidly below and very slowly above this altitude (Figure 7-9).

The exact shape of the profile and the values of Nm and hm are highly variable functions

of geographical location, time of day, season, and sunspot activity. If sufficient

ionospheric sounding data are measured (with an ionosonde or a backscattering radar) at

a given location and time, a reasonably accurate construction can be made of the electron

density profile. From these data, interpolated to the time and geographic location of inter-

est, the values of Nm and hm can be estimated.
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H
N = N5 e -kSa$

2000 km = h5 G

N = N4 e -k4a4

1000 km = h4 N = N3 e -k3a3

HEIGHT,
h

ELECTRON DENSITY, N

Figure 7-9. Empirical Worldwide Electron Density Prof'de

7.6.2.1 Modified Chapman Profile

The quantities Nm and hm define only one point on the electron-density-versus-altitude

profile. The other points can be assumed to lie on a modified Chapman profile in the

form (Reference 13)

Ne = Nm e (1-z-e-z) (7-137)

7-63



Z - h - hm (7-138)
HI

where h is the altitude and HI is the ionospheric scale height.

Substituting the modified Chapman profile (Equation (7-137)) into Equation (7-136) gives

40.3Nm eO_Z_e-z) (7-139)
NI = v2

as the altitude variation of the ionospheric refractivity.

It is generally conceded that the modified Chapman profile does not represent the best

possible normalized profile. The fixed ratio of the total electron content above the maxi-

mum point to that below tends to be too large, on the average, compared with the ob-

served diurnal variation. However, the theoretical foundation upon which Chapman based

the derivation (Reference 14) and the susceptibility of the function to treatment of refrac-

tion effects in a closed analytical form argue for its continued use.

In GTDS, the maximum electron density, Nm, and its associated altitude, hm, are deter-

mined as functions of the tracking station location and the variations in solar flux. The

method of characterizing and determining these variables is described in Section 7.6.2.3.

The ionospheric scale height is given in Reference 13 as

5 [30 + 0.2(hm - 200)] (kilometers) (7-140)
HI= -_

7.6.2.2 Empirical Worldwide Profile

The electron density profile is modeled as consisting of a biparabolic bottomside layer, a

parabolic topside layer, and a five-sectioned topside exponential layer, as shown in Fig-

ure 7-9. This profile is defined by the following equations:

Bottomside:

b2 ")2 (Segment A-B) (7-141)NI = Nm 1 _mJ
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Topside:

NI = Nm (1

NI = N1 e-klal

NI = N2 e-k2a2

NI = N3 e-k3a3

NI = N4 e-k4a4

NI = N5 e -kSa5

(Segment B-C)

(Segment C-D)

(Segment D-E)

(Segment E-F)

(Segment F-G)

(Segment G-H)

(7-142a)

(7-142b)

(7-142c)

(7-142d)

(7-142e)

(7-14213

where

Yt = a Ym

a =f 11 + 0.1333 (foF2 - 10.5)

b = h-hm

a_ -- h - hi

a2 -- h - h2

a3 = h - h3

a4 = h - h4

a5 = h - h5

(for fo F2 <

(for f0 F2 >

10.5 megahertz)

10.5 megahertz)

(7-143a)

(7-143b)

(7-143c)

(7-143d)

(7-143e)

(7-14313

(7-143g)

(7-143h)

The empirical profile is completely defined by the parameters hm, Nm, and Ym for the

bottomside segment and N1, Nz, N3, N4, Ns, kl, k2, k3, k4, ks, hi, h2, h3, h4, and h5

for the topside segment. The maximum electron density point (hm, Nm) is determined as

7-65



a function of the location and the variations of the
tion 7.6.2.3. The parameters hi through h5 are defined as follows:

hi = hra+d

1
h2 = hi + _ (1.0 x 103 - hi)

2 (1.0 x 103 hi)
h3 = hi + _

h4 = 1000 (kilometers)

h5 -- 2000 (kilometers)

solar flux, as described in Sec-

(7-144a)

(7-144b)

(7-144c)

(7-144d)

(7-144e)

and d can be determined from

d = _/1 + k]y2 _ 1 (7-145)

kl

are determined sequentially for the adjacent lower profileThe values of N1 through N5

segments so as to maintain continuity of NI at the segment interfaces, i.e.,

N1 = 1 - N m (7-146a)

N2 = N1 e -kl(h2-hl) (7-146b)

N3 = N2 e -k2(ha-h2) (7-146c)

N4 -- N3 e -k3(h4-ha) (7-146d)

N5 = N4 e -k4(hS-h4) (7-146e)

The final independent variables for the segmented Nrversus-h profile are the maximum

electron density, Nm, its associated altitude, hm, the half-thickness of the bottomside

layer, Ym, and the decay constants, k_ through ks, for the five topside exponential lay-

ers, respectively. The method for determining these variables in GTDS is described in

Section 7.6.2.3.
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7.6.2.3 Electron Density Profile Parameters

Both the Chapman and the empirical profiles require the maximum electron density, Nm,

and its associated altitude, hm. These variables are determined (References 15 and 17)

as functions of the critical frequency of the F2 layer, foF2, and the M-factor, which is

the ratio of MUF(3000)F2 (the highest frequency usable for a 3000-kilometer single-hop

propagation via the F2 layer) to the critical frequency, f0F2, i.e.,

hm -- [1346.92 - 526.40 x (M-factor) + 59.825 x (M-factor) 2] (7-147a)

Nm = 1.24 x 10 -2 x (foF2) 2 (7-147b)

where Nr, is in electrons per meter 3, hm is in kilometers, and foF2 is in hertz. The

critical frequency and the M-factor are functions of the location and the solar flux vari-

ations.

The critical frequency, f0F2, and the M-factor (also denoted M(3000)F2), required for

the profile calculation, are computed from monthly Us,k coefficient sets using equations

based on Fourier series expansions and spherical harmonic analysis, which were devel-

oped by the Institute for Telecommunication Sciences (ITS) in Boulder, Colorado (now

National Oceanic and Atmospheric Administration - Boulder).

The values of foF2 and M(3000)F2)are functions f2(_, 2, T) of the geodetic latitude, _,

longitude, 2, and time, T. The function f2(_b, 2, T) can be expressed by a series of

products of time-dependent functions D(T) and position-dependent geodetic functions

G(_b, 2) as follows:

fl(_, 2, T) = Q[D(T),

K

G(_, 2)] = Z Dk(T) Gk(_, 2) (%148)

k=0

where K is the cutoff point for the approximate representation of g2 (K = 75 when

f2 = foF2 and K = 48 when Q = M(3000)F2). These cutoff points were originally deter-

mined using a Student's t test.

The time-dependent functions can be expanded in their Fourier series representation with

the coefficients A_ k) and B_k) as follows:

H

Dk(T) = A_k) + Z [A(k)

j=l

cos jT + B_ k) sin jT] (7-149)
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The number of harmonics retained in the series is H. Higher harmonics are not consid-
ered since they are produced more by noise than by real physical variation. It is sufficient
to use H -- 6 for the foF2 computation and H = 4 for the M(3000)F2computation.

The Fourier coefficients A_k) and B_k) are numerically mapped as predicted, or final,

coefficients Us,k, which are the foF2 or M(3000)F2 coefficient sets used for the

foF2 and M(3000)F2 computations, respectively, i.e.,

A (k) = U2j,k (j = 0, 1,...H) (7-150a)

B_k) = U2j-l,k 0 = I, 2,...H) (7-150b)

Thus,

Q(_, 2, T) =

K H K

k=0 j=l k=0

+ sin jT •

K

k=0

U2j-l,k Gk(_, 2)]

U2j,kGk(_, 2)

(7-151)

The geodetic functions Gk(_, 2) are linear combinations of the surface spherical harmon-

ics. Extensive investigations to find the best arguments for the harmonic functions re-

sulted in the use of the modified magnetic dip, x = x(q_, 2), since smaller residuals

between the measured and computed test data values for f0F2 were obtained for this

case than for any other case. Thus, Gk(_, 2) is both an explicit and an implicit function

of latitude, _, and longitude, 2, i.e.,

Go(_b, 2) = sin q° x (7-152a)

Gk(_b, 2) = sin qk x cos k _ sin k2 (k = 1, 2,... K) (7-152b)

where qk denotes the highest power of sin x for the kth-order harmonic in longitude.
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The modified magneticdip, x, is an explicit function of the latitude and the magnetic dip,

l, where g is computed from the magnetic field components X(_b, 2), Y(_, 2),

Z(_, 2), i.e.,

1 (7-153)
sin x =

where X, Y, and Z are the north, east, and vertical components of the magnetic field

vector. They are computed following the spherical harmonic analysis of the magnetic field

by Chapman and Bartels, as discussed in detail in Reference 16.

Defining

and

0 = 90 ° - _b (7-155a)

R - Re (7-155b)
Re +hm

where

Re = equatorial radius of the Earth

hm = height of the F2 layer

the following expressions for X, Y, and Z result:

X

6 n

n=l m=0

d Pn,m(COS O)[gin COS rn_ + hnTM sin rn2] R n*z
dO

(7-156a)
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6 n

n--1 m=O

6 n

Z = _ E - (n + 1) Pn,m(COS 0) [gnm COS m2 + h_ sin m_]R n+2 (7-156c)

n=l m--O

Values tabulated from the analysis of the magnetic field for epoch 1960 are used for the

coefficients gm and hm. The quantity Pn,m(COS/9) is a multiple of the associated Legendre
function.

In addition to the maximum electron density, the empirical electron density profile also

requires the half-thickness of the bottomside layer, Ym, and the five topside decay con-

stants, kl through ks. The bottomside layer half-thickness is interpolated from tables in

which Ym is modeled as a function of foF2 and the local time. The five topside decay

constants are interpolated from tables as functions of foF2, the magnetic latitude, and the

daily solar flux. Adjustments for seasonal effects are then made for Ym and the lower

three exponential decay constants. The magnetic latitude is given by

_bm = sin -_ [sin _b sin Cp + cos _b cos _pp cos(A - tp)] (%157)

where (_bp, 2p) are the geodetic latitude and longitude of the magnetic north pole.

7.6.3 CHAPMAN PROFILE REFRACTION CORRECTIONS

The refraction correction formulas described in this section assume a spherically symmet-

ric atmosphere. The tropospheric correction terms utilize an exponential refractivity pro-

file, and the ionospheric correction terms utilize a modified Chapman electron density

profile. Approximations in the derivation limit the application at very small elevation

angles. The values for Nm and hm used in the following equations are determined as

functions of the location of the tracking station and the time as described in Sec-

tion 7.6.2.3. The scale height, H_, is calculated from Equation (7-140).

7.6.3.1 Range Correction

There are two speeds associated with electromagnetic signal propagation through a me-
dium of index of refraction n, as follows:

C
Cp = phase speed = -- (7-158a)

n
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% = group speed - dn (7-158b)
n+v--

dv

where c is the vacuum speed of light.

The phase speed, %, is the speed associated with a phenomenon sensed by a phase

measurement. The group speed, %, is the speed associated with a measurement of the

transmission time of an energy pulse. In a nondispersive medium, such as the tropo-

sphere, dn/dv = 0 by definition. Therefore, the phase and group speeds are the same, in

terms of the refractivity given by Equation (7-131), i.e.,

c c (7-159)
Cp = Cg = -- =n 1 +NT

The ionosphere, however, is dispersive and the two speeds are different. Appropriate

differentiations and substitutions of Equations (7-134), (7-135), and (7-136) into Equa-

tions (7-158) show that, to first order in Nx,

c c (7-160a)Cp - --
n 1 - NI

C

cs no _ (1- Ni) c - (7-160b)= 1 +Nt

The phase speed is greater than the vacuum speed of light. The time associated with the

transmission of a signal over a path from the tracking station to the spacecraft is written

as

f ds/cp 1Atp = = --
"total path C

fAts = ds/% - c
•*total path

(1 + NT)ds +

:roposphere

(1 + NT)ds +

troposphere

1

C

1

C

(1 - NI) ds (7-161a)

onosphere
,

(1 + N1) ds (7-161b)

Ionosphere

depending on whether or not the measurement is of a phase or a group transmission

property. In these expressions, ds is the increment of length along the signal propagation

path.
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The first terms in Equations (7-161) (unity in the integrands) represent the vacuum trans-

mission times, and the second terms (the refractivities) represent the time corrections,

Ate, caused by the atmosphere. The evaluation of Equations (7-161), by substituting for

the refractivities from Equations (7-132) and (7-139), yields the total atmospheric range
correction in the form

A O = c At_ = csc E [Q + U - (P + V) cot 2 E] (7-162)

The ionospheric terms are

Q= + 40.3 Nme HIIv2 e-'-z _ e_e {(hm - hL)/HI}] (7-163a)

p= 4- 403 e-i{h[e_._:rs e-, {(hm - hL)/HI)]

- (h - hL) - HI [S(Z) - SL]}

(7-163b)

where the positive sign denotes the range increment due to a group delay and the negative

sign corresponds to the phase range decrement. The tropospheric delay terms are

U = HT Ns (7-164a)

V = H_ Ns. (7-164b)
rs

In Equations (7-162) through (7-164),

E

h =

rs =

p =

hL =

elevation of the straight line relative position vector from the tracking

station to the spacecraft

spacecraft altitude

tracking station radius from the center of the Earth

frequency of the signal transmission

lower altitude limit for the ionosphere (set at 80 kilometers in GTDS)
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_- and

S(Z) = e -z
e-2Z e-3Z e-4Z

+ + • • • (7-165)
2 ' 2! 3 • 3! 4 • 4[

(hm - hL./SL = 0.5772156649 + HI
(7-166)

where

z - h - hm (7-167)
HI

The expression SL is used as the evaluation of the series S(z) at the lower limit because

of convergence difficulties with the expression given by Equation (7-165).

The approximations made in the evaluation of the integrals in Equations (7-161) limit the

validity of the form of the solution given by Equation (7-162). In particular, the error

increases as the elevation angle decreases. Hence, the algorithm that is implemented in

GTDS modifies this basic form (Equation (7-162)) to minimize the erroneous excursions

at low elevation angles.

Typically, the true range refraction correction increases monotonically as the elevation

angle decreases. Equation (7-162), however, can exhibit a maximum value at some angle

and then decrease (even to negative values) for smaller angles. The maximum value is

found by setting the following derivative to zero

dA_ = _ (cotE) Ao + 2(P + V) cot E csc 3 E (7-168)
dE

and solving for E = EM

Q + U- 20a + V)

cot 2 EM = 3(P + V)
(7-169)

In an example computed for typical troposphere and ionosphere profiles and for a VHF

frequency of 136 megahertz, the maximum value given by Equation (7-169) occurred at
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roughly EM = 22 degrees. Thus, it would not be a good approximation to truncate the

range corrections to this same maximum value for all elevations E less than 22 degrees.

Accordingly, the algorithm in GTDS simply replaces the true COt 2 E term in Equation

(7-162) with the limiting value given by Equation (7-169) when cot 2 E is greater than

cot 2 EM. The (csc E) factor in Equation (7-162) causes the range correction to continue to

increase as E decreases below EM. In fact, it is necessary to truncate this factor (and

hence the range correction) at a small elevation angle to prevent the values from becom-

ing unrealistically large. On the basis of comparisons with ray traces computed through a

typical ionospheric profile, it was determined that the (csc E) cutoff should be made for

sin E less than 0.225. The comparison of the ray trace results with the GTDS algorithm is

shown in Figure 7-10. The ionosphere was represented as a modified Chapman profile

given by Equation (7-137), with

Nm = 1.0 x 1012electrons/meter 3

h m = 300 kilometers

HI = 65 kilometers

v = 136megahertz

For E _> 35 degrees, the corrections given by Equation (7-162) are essentially the same

as the exact ray trace results. Below this angle the errors are less than 20 percent. Since

uncertainties in the knowledge of the ionospheric characteristics can exceed 50 percent, it

is not worthwhile from a practical standpoint to insist on greater accuracy in the algorithm

at lower elevation angles.

7.6.3.2 Elevation-Angle-Dependent Corrections

Bouguer's Formula, the analogue to Snell's Law for a spherically stratified medium, gives

n r sin i = constant (7-170)

along any ray through the medium. Here i is the local incidence angle between the ray

and the radius vector of magnitude r. Substituting rs + h for r in this formula and evalu-

ating at two points on a ray yields the following relationship for the two incidence angles
as functions of the altitudes and indices of refraction:

sinio = __n (rr__ +h_)sin i no +
(7-171)
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Figure 7-10. Refraction Correction Comparison of the Ray Trace

Versus the GTDS Algorithm
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If the initial point is taken at the tracking station, the apparent elevation angle of the ray is

Ea. The initial point yields

h0 = 0 (7-172a)

no -- 1 + Ns (7-172b)

sin io = cos Ea (7-172c)

Substituting Equations (7-172) into Equation (7-171) yields

cos E_ = n(rs + h) sin i (7-173)
(1 + N,)r_

If i were known a priori at the spacecraft position, Equation (7-173) could be used to

compute the apparent elevation angle at the ground station. However, i is not known and

Equation (7-173) must be modified to reformulate the desired solution in terms of quanti-

ties that are known. An approximation is made to an integration along the ray, resulting
in

cos E
cos Ea = (7-174)

(1 + N_)(1 + I)

where

cot E
I = -- [Q - U- (P- V) (2 + cot 2 E)] (7-175)

rs

oos_E)_
6 = cos -1 _. rs + h J E (7-176)

Equation (7-174) is used as given for the correction of Minitrack data, since the direction

cosines with respect to the station horizontal baseline both involve the factor Ea. The
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"-.__ correction for the elevation angle is determined (via the tangent of the difference of two

angles) to give

Ea -- E

_'COS E[v/(1 + Ns) 2(1 + 1) 2- cos 2 E -

tan-1 L c°s2 E + sin El(1 + Ns) 2 (1 + 1)2 _ COS 2

(7-177)

The refraction corrections to the X and Y gimbal angles (for both the 30-foot and 85-foot

antennas) enter through the dependence of these angles on the elevation angle of the

propagation path. The appropriate corrections are

(XA --X)3o =

(YA - Y)30 =

t"

Isin A COS E[sin E - %/(I + Ns) z (i + I)z - cos 2 E ]I

tan-t L_sin E%/(1 + N+) z (1 + 1) 2 - cos 2 E +
sin 2 A COS 2 E

sin-t (1 + Ns) (1 + I) 1 - cos 2 A cos 2 E

- ,/(1 + (1 + - co: A co: E ]}

f COS A cos E %/(1 + Ns) 2 (1 + I) 2 cos 2 E - sin E

.-%

(XA - X)s5 = tan -1
sin E_/(1 + N_) 2 (1 + I) 2 - cos 2 E + cos 2 A cos 2 EJ

sin A cos E /%/1 - sin 2 A cos 2 E

r"

(YA -- Y)ss = sin -1 (1 + N,) (1 + I) /

- %/(1 + Nz) 2 (1 + I) z - sin 2 A cos 2 E l}

(7-178a)

(7-178b)

(7-178c)

(7-178d)

where A is the azimuth angle.

7.6.3.3 Doppler Corrections

The effects of atmospheric refraction on USB Doppler measurements are expressed in
A

Appendix C in terms of difference vectors ACa and Ad between unit vectors along the

actual (uplink and downlink) propagation paths and the straight lines characterizing the

hypothetical vacuum propagation paths. Figure C-1 depicts the geometry of the two- or

three-way Doppler signal transmission. From this figure, the four equations that define
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the conditions at each end of the uplink and downlink paths are (Equations (C-12) and

(C-14))

^ ^ (7-179a)U T = U + A_ T

^ ^ ^ (7-179b)U v = U + Au v

^ ^ n (7-179c)dv = d + Adv

^ a A (7-179d)dg = d + AdR

where

^ Fv - FT L/ I_U)'"-'""a"U =
12 -

and

^ t-R - _v
d = (7-180b)

- rvl

are unit vectors pointing up along the uplink path and down along the downlink path (both

paths are characterized as straight line relative position vectors), and

rv = satellite position vector

t-T = ground transmitter position vector

t-g = ground receiver position vector

An equation was derived in Appendix C for the Doppler-plus-bias cycle count N for the

two-way or three-way measurement made by the USB system. The atmospheric refraction

effect is the term A 0avs/2 (Equation (C-34)).

The quantity

A0avs = A_(t + AtRR) + A0(t) (7-181)
2
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is the averageof the quantities obtained by evaluating

A • A ^ -- (7-182)
Ab = A_aT rT + Adv r-v - AUv Adg rR

at the beginning and at the end of the Doppler-plus-bias counting interval.

The computation of the USB Doppler refraction effect, therefore, requires a means for
A A A A

computing the correction vectors Au T, AUv, Adv, and ^dR at the appropriate times.

The correction vector A_aT for the uplink path at an instant when the ground station

transmits a signal to the spacecraft is the difference between the unit vectors _aT and _a

along the actual and the hypothetical vacuum propagation paths. It must lie in the plane

defined by _ and the local vertical _T at the station, /f it is assumed that the refractive

medium is a spherically layered atmosphere. Therefore, A_T is expressed as a linear combi-

nation* of _ and _'T

A_a T = A _ + B _'T (7-183)

In terms of the apparent elevation angle, Ea, of the actual propagation path and the

straight-line relative position vector elevation angle, E,

^ ^ (7-184a)
u T u = cos (Ea- E)

^ ^ (7-184b)
u T v T = sin Ea

Substituting from Equations (7-179) and (7-183) into Equations (7-184) and solving ex-

plicitly for A and B yields

A = cos Ea 1 (7-185a)
cos E

B = sinEa - tan E cos Ea (7-185b)

*The vectors fi and _'T coincide in the exceptional case of a direct overhead alignment.
case works out correctly, since A = -B, giving AuT = 0.

However, this
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Equation (7-174) can then be used to eliminate Ea, giving finally

1
A = - 1 (7-186a)

(1 + N,)(1 + I)

1 [_/(1 + N,) z(1 + I) 2- cos 2 E - sinE] (7-186b)B = (1 + N_)(1 + I)

where I is as defined in Equation (7-175) and N_ is the tropospheric surface refractivity at

the transmitter.

Similar considerations apply in the determination of the correction vector A_v for the

uplink path at the instant when the signal is received at the spacecraft. The geometry and

notation are presented in Figure 7-11. Here again, the correction vector is expressed as a

linear combination

^ (7-187)A_v = C _ + D Vv

The following relationships are obtained from Figure %11:

^ ^ (7-188a)
U V v = COS O"

^ ^ (7-188b)
U v U = COS a

^ ^ (7-188c)Uv Vv = cos i

cos a = cos crcos i + sin cr sin i (7-188d)

Straightforward manipulation of these relationships, using Equations (7-187) and (7-179),

yields a system of two simultaneous equations in the unknown coefficients C and D. The

solutions for C and D in terms of i and cr are

sin i
C - 1 (7-189a)

sin a

D = cos i - cot cr sin i (7-189b)
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Figure 7-11. Uplink Path Geometry at Spacecraft Signal Reception

Equating the right-hand sides of Equations (7-173) and (7-174), making use of Equa-

tion (7-118), and solving explicitly for sin i yields

sin i - rT COS E (7-190)
rv (1 - NI)(1 + I)

Examination of the triangle in Figure 7-11 shows that

(7-191a)E+-- +6+a=oz
2

or

E + 6 - ar cr (7-191b)
2

Therefore,

sin cr = cos (E + 6) (7-192)
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From Equation (7-176), this can be reduced to

sin e cos (E + 6) rT= = -- COS E (7-193)
rv

Substituting Equations (7-190) and (7-192) into Equations (7-189) finally yields

1

C = (1 -NI)(1 + I) - 1 (7-194a)

D

F.
1 ] / r_ E

(1 - NI)(1 + I) (1 - Nx) 2 (1 + 0 2 c°S2r_Lv
(7-194b)

If the same procedure is repeated for the downlink path to solve for the correction vec-
A A

tors Adv and AdR, the result is

AdvA = C' dA + D' VvA (7-195a)

A A' ^ B' A (7-195b)AdR = d + VR

The solutions for C' and A' are identical with those for C and A, whereas the solutions

for D' and B' are the negatives of those for D and B (Equations (7-194) and (7-186)).

The quantities I and NI appear in the expressions for the primed and unprimed values of

A, B, C, and D. Equations (7-139), (7-163), and (7-175) show the dependence of these

quantities on the signal transmission frequency. The uplink carrier frequency should be

used to compute the unprimed quantities, while the downlink carrier frequency should be

used for the primed quantities.

The Doppler refraction correction for GRARR VHF and for sidetone ATSR data is shown

in Appendix C (Equation (C-42)) to be of the form (-A_ r0, where the spacecraft
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velocity, rv, is taken at the signal turnaround time corresponding to the midpoint of the

Doppler count interval. This time is the measurement time tag (the preprocessor-

determined midpoint of the Doppler count interval) corrected in the orbit determination

processing for the light time from the spacecraft to the station. The light-path bending

term, A_v, is computed according to Equations (7-187), (7-189), and (7-194). The vec-

tor _ is defined (Equation (C-12)) as the unit vector directed along the instantaneous

relative position vector from the station to the spacecraft. All other parameters in Equa-

tions (7-189) and (7-194) are defined in terms of this instantaneous relative geometry.

7.6.4 SEGMENTED PROFILE REFRACTION CORRECTIONS

The refraction correction formulas, described in Reference 15, assume that the total re-

fraction correction is the sum of the tropospheric and ionospheric corrections as follows:

AQ = AQT + AQI (7-196a)

/_ = A_ T + AEI (7-196b)

AO = AbT + AOI (7-196c)

where AOT, /_kET, and AQ T are due to the troposphere, and AOI, AEI, and A01 are due to

the ionosphere. These individual corrections are presented below.

7.6.4.1 Tropospheric Correction

The tropospheric corrections are obtained from Reference 12 and assume that the atmos-

phere has spherical symmetry and an exponential refractivity function as described by

Equation (7-132). The equations are applicable over the entire range of elevation angles

(0 degrees to 90 degrees).

Using monthly mean values of the refractivity, Ns, and the scale height, HT, the following

parameters are calculated:

P = 2__Hr (7-197a)

V rs
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10-6Ns rs (7-197b)
q= HT

where rs = 6369.96

The range and elevation angle corrections are

AQT = 10 -6 N, HT (m
1 10 -6 N_ r_ L 2 cos 2 E_.'_

)2 Q HT
(kilometers) (7-198a)

AET = 10_6 Ns cos Ea ( i r_L) (radians) (7-198b)

where

Ea = apparent elevation angle of the received signal

Q = slant range to the satellite

The quantity L is given by

1 i2 (7-199)L = 1 - i sin Ea + -- 10 -6Ns
2

and the quantities i (bending integral) and m are complex integral functions of the refrac-

tivity function and the elevation angle. Reference 12 presents the following approxima-

tions for i and m which are accurate over the entire range of elevation angles:

i= F (sin Ea, I1, 12, io, il, p) (7-200a)

m = F (sin Ea, M, M2, mo, ml, p) (7-200b)
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where the function F is given by

F(a, F1, F2, fo, fl, P) =

1

gl
a +

a +
g2 x 1.08885

g3 x 1.320903
6t +

a + g4 × 1.21313

(7-201)

with

gl = p2 Fa (7-202a)

p2 F2) (7-202b)

g3 =
g2

f Fl(1+  l+flFl, (7-202c)

fo g_
g4 -

P3

(7-202d)

The variables I1, I2, io, and il are

1(1)I1-- _- 1 2 q
(7-203a)

3( 3) lq2I2 = _- 1- _-q + -_
(7-203b)

io = _ (1 - 0.9206 q)-0.4468
(7-203c)
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i I ---
2

1-q
(7-203d)

and the variables MI, M2, mo, and ml are

1(3)M1=_ 1 4q (7-204a)

3( 25 11)M2 = _- 1 q + q224 36
(7-204b)

(mo -- io 1 + q + q2i 2 - _qko (7-204c)

m 1 =

(1)2 1+ _-qi 2

1-q

(7-204d)

with

ko = _ (1 - 0.9408 q)-O.4759 (7-205)

The range-rate correction is given by

AQT = -10-6 Ea Ns HT cos Ea In 2 rsQ

x (i + 10 -6 N_ i j - j sin Ea)]

- -- q L cos 2 E_

(7-206)

where

j= F (sin Ea, J1, J2, jo, h, P) (7-207a)
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n = F (sin Ea, Na, N2, no, nl, p) (7-207b)

The variables J1, J2, jo, and jl are

3

Jl = _ I1
(7-208a)

1 (512 - _)
J2=

(7-208b)

jo = (7-208c)

i2
J1 -- "7-

Jo
(7-208d)

where

i 2 =
(1 - 1.023 q)a.s

(7-209)

The variables N1, N2, no, and na are

N1 = _3 M1
2

(7-210a)

1
(7-210b)

no= (7-210c)

n I =

io

(1 - q)2
+ i2q+

1

_- i2 (io q)2

no

(7-210d)
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7.6.4.2 Ionospheric Correction

Ionospheric refraction corrections are computed from the empirical electron density pro-

file, described in Section 7.6.2.2, and its integrated electron content. The profile is com-

puted for the latitude, _, and longitude, )l, where the radio wave from the measuring

station to the satellite penetrates the ionosphere. This is called the subionospheric point

and is computed as a function of the station latitude, _s, and longitude, _.s, and the

elevation angle, E, and azimuth angle, A, from the station to the satellite, as follows:

_b = sin -1 (sin _s cos a + cos _s sin a cos A) (7-211)

_" =_ + sin-l(sinAsina lcos (7-212)

where a is the geocentric angle between the station apd the subionospheric point, given

by

z_ E-sin-I (Rec°sE_ (7-213)
a - 2 _.Re -+ h.,)

and hm is the height of the ionosphere at the maximum electron density above the surface

of the Earth. On the first iteration, hm is estimated to be 300 kilometers. After computing

hm via Equation (7-147), the difference between the computed and estimated values of

hm is determined. If this difference is less than 1 kilometer, its effect is negligible; if it is

greater than or equal to 1 kilometer, iterative computations of Equations (7-211) through

(7-213) are made to obtain a new value of hm.

The total vertical electron content, N_, required by the correction algorithm is obtained by

integrating the electron density profile in Equations (7-141) and (7-142) from zero to the

height of the satellite, h. For a satellite below the biparabolic layer of the ionosphere,

N--I = 0 (7-214)

For the satellite in the bottomside biparabolic layer,

fl _ [1-_5- 2 (hm- h)3 1 (hm - h)5.1(7.215)N-'--I= NI dh = Nm Ym- (hm- h) + _ y2m 5 y4m
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"4__ where Ym is the half-thickness of the bottomside layer of the segmented electron density

profile.

For the satellite in the topside parabolic layer,

I1-_ (hm - h) 3]NI = Nm Ym - (hm - h) + " "3yt2 (7-216)

where Yt is the thickness of the topside parabolic layer (see Figure 7-9) and is given by

Yt = a Ym (7-217)

where

lO.5)

(for foF2 < 10.5 megahertz)

(for foF2 > 10.5 megahertz)

(7-218)

For a satellite in the first exponential layer,

N-I = Nm ll-_ Ym + d

1 - e-ki(h-hl)_ (7-219)

where

d

(1 + k 2 yt2 - 1

kl

(7-220)
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For a satellite in the secondexponential layer,

ii_'I = Nm Ym + d d3 + Nm 1 -

.1 - e-k1(h2-hD e-kl(h2-hD -- e-[k1(h2-hD+k2(h-h2)]'_
X kl + k2 )

(7-221)

For a satellite in the third exponential layer,

NI = Nm Ym + d - --

1 - e -kl(h2-hD

kl k 2

e-k_(h2-h_)El _ e-k2(h3-h2)_
+

+

e-[k1(h2-hl)+k2(ha-h2)]E1_ e-ka(h-h3)]lk3

(7-222)

For a satellite in the fourth exponential layer,

NI = Nm (_5 Ym + d + Nm

1 - e-k1(h2-hD e-k1(h2-hDEl -- e-k2(h3-h2_
X +

kl k 2

+
e-[kl(h2-hl)+k2(h3-h2)]E1 _ e-k3(h,-h3)-]

k3

-4-
e-[k1(h2-hl)+k2(h3-h2)+k3(h4-h3)]E1 -

k4

(7-223)
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Finally, for a satellite in or abovethe fifth exponential layer,

NI = Nm (I-_ Yrn + d - +Nm - _-t2)(ld,-

f - e-k1(h2-hD e-k1(h2-hd E1 - e-k2(h3-h2_x ka + k2

+
e-[k1(h2-hO+k2(h3-h2)]El_ e-k3(h,-h3_

k3

e-[ka(h2-hl)+k2(h3-h2)+k3(h,-h3)]El_ e-k4(h5-h4_

+ k4

+
e-[kl(h2-hl)+k2(h3-h2)+k3(h4-h3)+k4(hs-h4)]k5 E1 - e-ks(h-hs)-] t

(7-224)

The range correction, A01, is computed from the vertical electron content and the eleva-

tion angle at which the radiowave passes through the ionosphere, as follows:

AOI =
40.3 N I

Re 2 (7-225)

where the quantity f is the transmission frequency, the height of the mean of the electron

distribution, hmean, is given by

1 N1 8 (7-226)
hmean = hm + -- " Ym

2 Nm 15

and

1 (___ 1 "11/2

7 = _2f 2 + "_dJ
(7-227)

where fu and fd are the uplink and downlink frequencies, respectively.
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The range-ratecorrection, Abl, is obtained by differencing two successive range correc-

tions in the following form:

Ab,_ = - A0'(t) - AoI(t- At) (7-228)
At

At the start of a data span for which no previous range correction exists, A 0i assumes
one of the forms described below.

Satellites Below the Lower Biparaboli¢ Layer

Abx = 0 (7-229)

Satellites Within the Lower Biparaboli_ Lsycr

Abl_ dAoI_ (___F__) 2 (40"3 X ]'24 X "]0-2) [1 - ('hy_ h)2] 2dt x x la[ ( )1':'1 - Re + hmean cos Ea

sin E a COS Ea
A0I Re + hmean

+ x

e + hmean cos ga

(7-230)

where

la = altitude rate of the satellite

= elevation rate of the satellite
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Satellites in the Topside Parabolic Layer

(40.3 x 1.24 x 10-2) I1 (hm- h)2]yt2

d-t = [1 - (Re Re;_.lmean COS Ea)2] 1/2

+

Re Re )2 sin Ea cos E_AQI + hmean × f_

( YRe cos Ea
1 - Re + hmean

(7-231)

Satgllites in the Exponential Layers

(40.3 x 1.24 x 10 -2 ) 1

dAp I (f#2) 2= - _ x f Re "/2-11/2 xla x em

1 - / ...... cos Ea / /
(7-232)

A_)I Re _ _.lmea n sin E_ cos E_
+ x 1_

Re cos E_
1 - Re + hmean

The exponential multiplier, em, of the la term can take on five different forms, as defined

below.

For a satellite in the first exponential layer,

em = e -kx(h-hl)
(7-233)

For a satellite in the second exponential layer,

em = e -kl(h2-hl) e -kz(h-h2) (7-234)
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For a satellite in the third exponential layer,

em = e -kl(h2-hl) e -k2(h3-h2) e -k3(h-h3) (7-235)

For a satellite in the fourth exponential layer,

em = e -kl(h2-hl) e -k2(h3-h2) e -k3(h4-h3) e -k4(h-h4) (7-236)

Finally, for a satellite in or above the fifth exponential layer,

em = e -kl(h2-hl) e -k2(h3-h2) e -k3(h4-h3) e -k4(hS-h4) e -kS(h-hS) (7-237)

The elevation angle correction, AEa, is given by

cos (AEa)
Xl cos (% - X2

(X 2 + X_ - 2X1 X2 cos a) 1/2
(7-238)

where

X 1 -- [(R e + h) 2 - R_ cos 2 _Ea] 1/2 + Re cos Ea tan (21 (7-239)

X2 = ResinEa-RecosEatan(2 ) (7-240)

a

"21 _/2 _ tan _° see2_°ro NmN-'-I

(deviation angle) (7-241)

ro = Re + hmean (7-242)
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hmean= hm +
8

2 Nm 15
Ylll

(7-243)

Re
sin _o = _ cos E_

ro

(7-244)

The variable _ is tabulated as a function of

_f°_2_ 1 sec 2 _rn (7-245)

where

sin _m = Re COS Ea (7-246)
rm

and

rm = Re + hm (7-247)

7.7 ADDITIONAL CORRECTIONS

This section discusses the modeling in GTDS of the light-time, ground antenna mount,

transponder delay, and spacecraft antenna offset corrections.

7.7.1 LIGHT-TIME CORRECTION

GTDS provides for a light-time correction which can be applied to GRARR, C-band, and

Minitrack measurements for greater accuracy of modeling. All of these measurement

types are modeled (Section 7.2.3) in terms of the instantaneous relative position vector

from the tracking station to the spacecraft, computed in the local tangent coordinate sys-

tem (Section 7.2.2). Since the spacecraft is the only object that is moving in this coordi-

nate system, the appropriate time for calculating the instantaneous relative position vector

is the time tv, when the vehicle transponder turns the tracking signal around. (For the

one-way Minitrack signal, tv corresponds to the time when the signal was transmitted by
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the spacecraft.)The actual measurementis time-taggedat the time tR, when the signal is
receivedat the ground station. The light-time correction consistsof making an approxima-
tion to tv by changingthe measurementtime tag to

tv ---tR AQ (7-248)
C

where AQ is the one-way relative range from the spacecraft to the tracking station. A first

approximation to AQ is determined in GTDS by computing the relative range vector at

the actual measurement time, tR, utilizing the spacecraft position vector at tR. The differ-

ence between this relative range and the correct relative range corresponding to tv could

be corrected by means of an iterative estimation algorithm. However, this is not done in

GTDS, since the very small improvement in accuracy is insignificant compared with the

degree of the approximation implicit in the basic measurement model. Thus, the first

estimate for AQ is used in computing the light-time correction to the measurement time

tag.

7.7.2 GROUND ANTENNA MOUNT CORRECTIONS

For X and Y antennas, a correction is performed on range and range-rate measurements,

since the electrical phase center of the antenna moves with the antenna and is displaced

from the geodetic point of reference which is the center of the fixed axis. The correction

AR applied for range is

AR = D cos (Y) (7-249)

which, by differentiation with respect to time, gives the correction for the range rate

AI_ = -D sin (Y) Y (7-250)

In these expressions, Y is the measured Y angle and D is the nominal distance from the

electrical phase center to the center of the fixed axis. The correction to AR and AR due to

the X angle and the corrections to the X and Y angles due to the displacement of the

electrical phase center are ignored.

7.7.3 TRANSPONDER DELAY CORRECTION

For those tracking systems that use a transponder onboard the satellite to receive and then

retransmit a signal, the transponder delay, i.e., the time interval between reception and
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transmissionof a given signal, must be taken into consideration.These satellite transpon-
der time delays are functions of the frequency of the signal received by the transponder,
i.e.,

Ar = f(VR) (7-251)

The characteristics of the function f for a specific transponder must be determined ex-

perimentally by calibration of the transponder on the ground before launch.

For tracking systems other than TDRSS, the function obtained in this manner can then be

entered in GTDS as a table of transponder delay times versus the frequency, from which

the delay for any intermediate value of the frequency can be obtained by interpolation. As

an alternative, provision is made in GTDS to use nominal (default) tables or constant

delay times. See Section 7.3.2.2 for a description of the method used for TDRSS.

7.7.4 SPACECRAFF ANTENNA OFFSET CORRECTIONS

In general, when computing the range to a spacecraft, it is assumed that the tracking

antenna is located at the center-of-mass of the spacecraft. However, in cases where the

tracking antenna is located at a significant distance (e.g., more than 5 meters) from the

center-of-mass, this offset can be accounted for in modeling the tracking measurements

using the model described in this section. Currently, this capability is only available for

the user spacecraft in computing TDRSS and/or SGLS tracking measurements.

The antenna offset vector, A_-a, is assumed to have constant components in the orbit

plane coordinate frame (described in Section 3.2.5), i.e.,

^ ^ + AC z^ (7-252)
A_-a = AH X op + AL Y op op

where

^ _- (7-253a)
Xop - I -I

^ ^ ^ (7-253b)
Yop = Zop X Xop

A g X r (7-253c)Z =

op x

and t- is the radius vector of the spacecraft center-of-mass.
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The true antenna location to be used in the computation of the spacecraft tracking meas-
urements is then given by

t-a = t-+ At-a (7-254)

7.8 ESTIMATION MODEL

The deviation between the actual measurement and the computed measurement is mod-

eled as a first-order Taylor series expansion around the predicted measurement. This

expansion relates deviations in the measurement residuals to deviations in dynamic pa-

rameters, station locations, measurement biases, and time biases, and it establishes the

required set of linear regression equations. The estimation model for any measured quan-

tity can then be written as

Oo - Oc = 0Oc Aq + n (7-255)
0q

where

O0 = actual measurement with time tag t

Oc = computed measurement based on a previous estimate of the parameter
vector

Aq = correction to the parameter vector

n = measurement noise

The parameter vector _ can consist of dynamic parameters, _ (those parameters involved

in the equations of motion); station locations, _s; measurement biases, b; and measure-

ment time biases, 6t. The total parameter vector can then be written as

= (7-256)

L6tJ

The modeled measurement can be written functionally as

Oc = f(q, t) = f(_, Vs, b, 6t, t) (7-257)
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Substituting the appropriate partial derivatives of Equation (7-257) into Equation (7-255)
yields

which can be written in a more compact form as

o0_o 
(7-259)

or

Oo - Oc = FAq + n (7-260)

Equation (7-260) defines the linear regression equations that are solved by the iterative

classical or sequential weighted least-squares methods described in Chapter 8. The for-

mulation, as shown in Equation (7-260), describes m equations (for m measurements) in

p unknowns (the number of q parameters). The matrix F in Equation (7-260) is of di-

mension (m x p). Chapter 8 derives the required solution to the normal equations in

terms of F and the weighting matrix, W, under the assumption that W is a diagonal

matrix, that is, that the measurements are uncorrelated. Under this assumption, the terms

in the normal equations requiring F can be developed on a measurement-by-measurement

basis, yielding the solution of the normal equations without explicitly forming the full

(m x p) F matrix. This is a standard method for all existing least-squares orbit deter-

mination programs and is discussed in more detail in Chapter 8.
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CHAPTER 8--ESTIMATION

The basic orbit estimation problem involves solving for values of a set of parameters from

a measurement model (described in Chapter 7) so as to minimize, in the sense of

weighted least squares, the differences between a computed and a measured trajectory.

The model parameters include the trajectory of the vehicle (initial conditions and differen-

tial equation parameters), the locations of the ground stations and relay spacecraft, and

the bias errors in their instruments or clocks (these errors may vary as a function of the

pass over a station). In practice, values are determined for only a selected subset of the

model parameters.

Since the measurements made by a tracking system are imperfect, no trajectory fits them

exactly. At best, only an estimate of the actual trajectory can be obtained from the data.

GTDS uses a classical weighted least-squares estimator (derived in Section 8.2). For a

theoretical discussion of estimation, see References 1 through 6.

8.1 DESCRIPTION OF THE PROBLEM

Let a set of m measurements, denoted by an m-dimensional vector y, be given. These

measurements are assumed to be equal to a known vector function [ of a set of

p parameters, denoted by a p-dimensional vector x-, plus additive random noise, denoted

by a vector fi-, i.e.,

y = [(x---) + ff (8-1)

The above equation is called a nonlinear regression equation. The trajectory determina-

tion problem is to estimate X- given y, the functional form of [, and the statistical

properties of 5.

The estimation process attempts to deduce a value for X- that minimizes the weighted sum

of the squares of the measurement residuals [y- [(x-)] between the actual measure-

ments and the measurements computed using the mathematical model. More precisely,

the following is minimized:

O(3 = [Y- [(x--)]w[y- [(x-)l (8-2)

where W is the m x m weighting matrix. The scalar quantity, Q, is called the loss

function. An a priori estimate of the state, _-o, is assumed to be available for use in the

minimization. The deviation of _-o from the true value of the state is assumed to have

zero mean and covariance, PAx0.
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A necessary condition for the loss function to be minimum with respect to x- is that
0Q/O_- = 0. Therefore, the value of x- that minimizes Q is a root of the equation.

OO 2 [y - f(x-)]v W O(__)ax- - = 0 (8-3)

The method of solving this nonlinear minimization is to linearize Equation (8-3) and then

apply a standard Newton-Raphson procedure to iteratively solve the nonlinear problem.

Expanding f(x--) in a truncated Taylor series about the a priori estimate, x-0, yields

f(x--)= f(x-o)+ F K_- (8-4)

where

n

nx = _- _o (8-5)

and

F Jpartial derivatives of [= (O_--)_r:_ro _-m x p matrix of ']
]f(x-) with respect to _,_" (8-6)

_evaluatedatx-= _-o J

The linearized measurement vector becomes

Ay = F Ax + (8-7)

where

Ay = y- f(_o) (8-8)

Substituting Equations (8-4) and (8-7) into Equation (8-3) yields the linearized partial

derivative of the loss function in Equation (8-3)

- 2(Ay - F_TWF = 0 (8-9)
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which c_n immediately be solved for Ax, yielding the classic equation for the best esti-
mate, Ax,

A

Ax = (F TWF) -1 F T W _ (8-10)

The value of _¢, the estimate derived from the linearized system, is

A A
x = X-o + Ax (8-11)

The symmetric matrix (F T W F) is called the normal matrix. The inverse of this p x p

matrix is the covariance matrix of the error in the weighted least-squares estimate, 2.

A

As a result of the linearization performed in Equation (8-4), the correction Ax must be

small so as not to violate linearity. This means that the a priori estimate, X-o, must be

reasonably close to the true external solution of Equation (8-2). If such is not the case,

the process is iteratively repeated in a standard Newton-Raphson procedure, each time

using the last best estimate _ as a reference for the linearization. The iterations continue
A

until the differential correction vector Ax is truly small (i.e., approaching zero), which is

equivalent to minimizing the original nonlinear loss function, Q(x).

In the following sections the specific estimator algorithms implemented in GTDS and their

associated covariance matrices are derived and discussed, and details concerning the

application of the estimation process are described. Much of the material is taken from

References 4, 5, and 6.

8.2 BATCH ESTIMATOR ALGORITHM

To facilitate the derivation of an iterative weighted least-squares solution, the various

quantities that are iteration dependent will be subscripted with an i. Thus, Ax in Equa-
^ A

tion (8-5) is written Axi = X-- X i, where x i is the best estimate of x, the extended

state, obtained from the i th iteration. At the beginning of the process (0 th iteration),
A
Xo = X0 is the a priori value of these solve-for variables. The objective is to determine
A A
xi+ 1 from x i so as to minimize the loss function.

The discussion that follows uses the expectation operator E{ }. If u denotes a random,

unbiased variable, the expectation of u, £{u}, equals zero. The expectation of a vari-

able x is the mean value of x or the first moment of x

e{x} = X- (8-12)
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The covariance is the expectation of the product of the deviations of two random variables
from their mean

cov {x, y} = _{(x- e{x})(y- e{y})} (8-13)

The initial assumption that the measurement vector y can be related to the state and

model parameters at epoch time, to, is given as

y = z-)+ n (8-14)

where two classes of variables are included. The p-dimensional vector R-, designated the

solve-for vector, contains as components the state and model parameters whose values are

known with limited certainty and are to be estimated. The q-dimensional vector Z, desig-

nated the consider vector, contains as components all model parameters whose values are

known with limited certainty but are not to be estimated. Nevertheless, the uncertainty of

_, is to be considered. A priori values of K and z are specified as R-0 and Zo, with

respective covariance matrices P_x0 and PAz0, i.e.,

e{R-o} = R- (8-15a)

cov{R-o - x-} - PAx0 (8-15b)

e{Zo} - z (8-15c)

cov{Zo - 2-} - Pazo (8-15d)

On the ith iteration, the loss function is defined to be

O(x--) = [g- hR-, 2-0)]TW [y- f(R-, 2-0)] + (R-- R-o)T P_,o(R-- X-o) (8-16)

The second term on the right has been added to the loss function to constrain the best

estimate to the a priori specified X-o, with the degree of constraint dependent upon the

uncertainty PAx0. This term accounts for the fact that R-0 is known to be accurate to a

confidence level given by PAxo- Therefore, any solution is constrained to satisfy the

a priori realization go to within the limits of its uncertainty.
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To obtain the weightedleast-squaressolution that minimizes Q(R-)in Equation (8-16), the
same procedure is followed as is used in Section 8.1. First 0Q/Ox is linearized; then, a

Newton-Raphson procedure is iteratively applied to solve the nonlinear minimization
a ithproblem. For convenience, the value of x i for the iteration is considered first, and the

nonlinear regression equation is linearized as follows:

- ^
f-(R', z-) = f(x i , 2-0) + Fi Axi + Ei Azi (8-17)

where

ax-G-- z- _i (8-18a)

az-G= z- Zo (8-18b)

and

Fi = ("_01-:x_l (8-19a)

koxy (z, z = _, to)

Ei = ("lOl__:x_I (8-19b)

kozJ (x-, _-= _, to)

Since the consider variables _ are not being estimated, their values remain equal to To.

Substituting terms with nonzero mean from Equation (8-17) into Equation (8-16) yields

the linearized loss function

Q'(Axi) = [Ayi - Fi _-il T W [_-i - Fi Axi]

+ (Axi - £xi) T PAxo-1 (axi - /_xi)

(8-20)

where the measurement residuals are

- A
Ayi = Y- f(xi, Z0)

(8-21)
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and the deviation of the a priori estimate from the i th iterative estimate is

_ A (8-22)/_Xi = X 0 -- X i

A

The value of _i that minimizes Q', denoted by AXi+l , is therefore

A

Axi.1 = (FiT W Fi + P-z_0) -1 [Fir W Ayi + _'ax0 _xi] (8-23)

and the best estimate of the solve-for variables is

i+l

A _ A A AXi÷l = X'--0 "1- mx k = Xi + AXi÷l (8-24)

k=l

This estimation process is iteratively applied until the convergence criteria (discussed in

Section 8.6.3) are satisfied.

Equation (8-23) is the estimation algorithm used in GTDS. It requires the inversion of a

p x p matrix, the same dimension as the vector of solve-for variables. Insofar as the

estimation algorithm is concerned, it makes no difference whether consider variables are

included. Equation (8-23) depends only on the values Z0, not on the uncertainty, Pt_z0.

This might be expected, since the uncertainty resulting from the inclusion of consider

variables affects only the second-order statistics or covariances (i.e., the ensemble proper-

ties). The last term on the right in Equation (8223) can only be included subsequent to the

initial iteration, since on the initial iteration Ax = 0.

The estimation algorithm in Equation (8-23) differs slightly from the classical weighted

least-squares algorithm (Equation (8-10)). This difference results from the addition of the

second term on the right in the loss function (Equation (8-16)).

8.2.1 MEAN AND COVARIANCE OF ESTIMATE

The best estimate _ which results from convergence of the estimation algorithm will next

be examined to determine its statistical properties. Two quantities are of concern, the

expected (mean) value and the covariance of the estimate. The expected value of the
A

deviation Ax yields the amount of bias in the estimate, while the covariance indicates the
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amount of dispersion or uncertainty. Obviously, zero bias and minimum dispersion are

the qualities sought.

In the following discussion, it is assumed that the iterations have converged and that the

unsubscripted variables _-, Ax, Ay, etc., correspond to the converged solution and pertur-

bations about it.

The expected value and covariance of the measurement noise vector, if, are assumed to

be

/_{n-} = 0 (8-25a)

cov{n--} = W -1 (8-25b)

and the linearized vector of measurement residuals can be written as

Ay = FAx + EAz + ff (8-26)

Therefore, the expected value of Ay is

${Ay} = E{F Ax} (8-27a)

since

e(n-} = e{Az---} = 0 (8-27b)

The covariance of Ay is

cov{Ay----) = _{[A--y- E(Ay)] [A---y- e(Ay)] T}

= E e{Az _--_-T}ET + E e{AzffT} + e{ff_--_T}ET + _{_-_-T} (8-28)

= E PAz0 ET + W-1

where the correlation between the consider variable errors and the measurement noise is

assumed zero, i.e.,

/_{Az fiT) = 0 (8-29)
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A
The mean of the best estimate x_+_ is

A
_{ Xi÷l

A

x-} = /_{Axi+_ - Axi}

= (F•W F + P-_)-'IF_W e{_) + P-_e{ax)

- (F_W F + P-_)e{_}]

= (FTW F + P-a_,o)-1 Paxo-1_?(X-o - x}

(8-30)

However, X-o was defined to have an expected value equal to x- (see Equation (8-15a)).

Therefore,

E{_ - _-} = 0 (8-31a)

and

e( _ } = _- (8-31b)

Equations (8-31) show that the best estimate is unbiased. The covariance of the error in

the estimate is

A

Pax = _{[_i+l - X'][_Ki+I - _-]T} = _{[axi+l _ axi][AXi+l _ Axi]T}

= _ {F T W E Pazo ET W F + F T W F + P-a_o

+ F T W [E E{Az (Ax - Z_x) T} P-a_o + E E{A---£ _-W} W F]

+ [e-a_e(ax - £x) _--_r}ET + FTW e{_ az_} E] W F

+ Pz_xo e{(_- - Ax) fiT} W F + F T W e{ff (Ax - Ax) T} P_xo} _T

(8-32)

where

= (F T W F + P-a_xo)-1 (8-33)
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To simplify Equation (8-32), the following definitions are made:

c_a,-- e{(_X- _x)_r} __e{(x- _o)(Z- z0)r}

-- e((_o- x--)(z0- z-)r}

(8-34a)

Caxoa,Z= eiaz(ax- Ex)T} = e{(z-Zo)(Z-Zo)r}

= _{(Zo-z--)(X-o-x-)T}

(8-34b)

Caz. = E{E_fir} = o¢{(z_ Zo)fir} = 0 (8-35a)

c_,z. = e{_a--_T} = e{n(z- Zo)T} = o (8-35b)

Caxon= e{(E_- Ex)nr}= e{(g- _o)nT}= 0 (8-36a)

C_on = e{_ (:,x - Ex)'q =

Therefore, Equation (8-32) becomes

e{n(_- Zo)r}= o (8-36b)

Pax = _P {FT W E Pazo ET W F + 1_ -1

T 1 -1
+ F T W E Cax0a z P-z_xo+ Paxo Caxo Az ET W F} _T

(8-37)

In Equations (8-35) and (8-36), it is assumed that no statistical correlation exists between

the measurement noise and the error in the solve-for or consider variables. The correla-

tion between errors in the a priori solve-for and consider variables, Caxoaz, is neglected in

GTDS, primarily because a priori values of this correlation matrix are usually unavail-

able. The terms are maintained in Equation (8-37) for completeness and for possible use

in the error analysis application discussed later. In the event that no consider variables are

included, Equation (8-37) reduces to

-1 -1
Pax = _ = (F T W F + Paxo) (8-38)

which is the gain matrix in the estimation algorithm (Equation (8-33)).
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It was stated previously that a desirable quality of an estimate is small dispersions.It is
evident from Equation (8-38) that the covariance matrix of error in the estimate, Pax,
varies with the measurementuncertainty, W-1, and the a priori covariancematrix of the
solve-for variable uncertainty, Pax0.Equation (8-37) showsthat Pax also varies with the
covariance matrix of uncertainty in the consider variables, Pazo.Therefore, minimizing
the measurementnoise, as well as the a priori uncertainty in the solve-for and consider
variables, will result in reducing the dispersion or uncertainty in the estimated variables.

The correlation betweenerrors in the solve-for and considervariables,which results from
the processing, is

c ,e z = - x-)(Zo - z-)T}

= _' {P_0 Cax0az - FT W E Pazo}

(8-39)

Even if the a priori correlation, Cax0Az, is assumed to be zero, a correlation between

errors in the solve-for and consider variables will result because of their dependency in

the processing model.

8.2.2 MEASUREMENT PARTIAL DERIVATIVES

Throughout Sections 8.2 and 8.2.1, the components of the solve-for and consider vectors

x and x have been ignored along with the way the components and their error

covariances, Pax and PAz, are associated with a specific time or epoch. Furthermore, it

has been assumed in Equation (8-14) that the calculated measurements at various times

(tl, t2, ..., tin) can be related to the solve-for and consider variables at the epoch time,

to. In Equation (8-17) it is assumed that the time varying matrices Fi and Ei can be

calculated, which linearly relate the calculated measurements to variables at the epoch

time. In the following section, attention is focused upon the solve-for and consider vector

components, the manner in which the time dependency is accomplished, and the proper-

ties of the normal matrix which are utilized in its formation.

The general estimation (solve-for) vector X- in the regression equation (Equation (8-14))

and the estimator equation (Equation (8-23)) contains the following types of variables:

t-s
X = -- {solve-for vector} (8-40)

b

dt
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"_ where

P dynamic parameters, consisting of the spacecraft state componentsat
epoch and model parameters in the acceleration model (Equation (4-1))
for one user spacecraft and up to three TDRSs; the model parameters
include gravity constants,the drag parameter, the solar radiation con-
stant, and thrust

tracking station locations or Bilateration RangingTransponder sites in
Earth-fixed coordinates

measurementbiases

measurement timing bias

The mean of B1950.0 or J2000.0 Cartesian coordinates,
purpose of describing the method.

and R0, are used for the

Each row of the F(t) matrix in Equation (8-19a) contains partial derivatives of the com-
puted measurement with respect to P-o, if.o, and the other specified components of

p, rs, b, and 6t. The dynamic variables _ must be related to the epoch time through the

state transition matrix, (I)(ti, to), as discussed in Chapters 4 and 6. Partial derivatives with

respect to r-_, b, and 6t are not dependent upon an epoch and can be obtained by differ-

entiating the measurement equation explicitly.

The nonlinear measurement equation is written in Equation (7-1) as

Oc = f0[R(t + 6t, p-), g(t + dt, p-), t-s)] + b + RFc (8-41)

where

R,R

RE c

position and velocity vectors for user spacecraft; for TDRSS tracking,

this also includes the position and velocity vectors for the TDRS

systematic error correction to the measurement due to atmospheric

refraction, light-time correction, transponder delay, antenna mount

errors, etc.
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The partial derivatives of a measurement, Oo at time tj, with respect to the solve-for

variables x are at time to, are given by

0Oe r OOc(tj) ] F O_-(tj) ] (8-42)k J

The first matrix on the right-hand side is explicitly determined from the measurement

equations in Chapter 7. The second term on the right-hand side, the state transition ma-

trix, must be obtained by integrating the variational equations (or approximations of these

equations), as described in Chapter 6 and in Section 8.2.3. Equation (8-42) constitutes a

single row _ of the F matrix.

On each iteration, the m measurements are sequentially processed to form the normal

matrix F T W F. Since the weighting matrix W is diagonal, the recursive relation for accu-

mulating the normal matrix is

m

F T W F = E _jT _j (8-43)4
j=l

where

= jth row of the F matrix given by Equation (8-42)

a I = standard deviation of the jthmeasurement

By forming F T W F row-by-row instead of manipulating the full (m x p) F matrix, a

saving in storage and computation time is realized. Since the matrix FTW F is symmet-

ric, elements below the main diagonal need not be computed or stored.

The general consider vector z in the regression equation (Equation (8-14)) can have as

components any model parameters in p, rs, b, or 6t.

Each row of the E(t) matrix in Equation (8-19b) contains partial derivatives of the com-

puted measurements with respect to the specified components of _. The partial deriva-

tives with respect to the dynamic variables _, specified in _, can be calculated

simultaneously with the dynamic partial derivatives in F(t) as described in Chapter 6.

However, the partial derivatives in E(t) need only be computed on the final converged

iteration, since the estimator equation (Equation (8-23)) is not dependent upon E(t).
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In GTDS the componentsof the vectors X- and z are merged on the final iteration to

an expanded state vector ft. The elements of ff are ordered as described above. The

measurement partial derivatives are then calculated with respect to if, and a

(p + q) x (p + q) expanded state normal matrix _T W F is sequentially accumulated

as described above. When all m measurements have been processed, selected elements of

_T W F are extracted to form F T W F, and E T W E, and E T W F, which are required

to compute the covariance and correlation matrices in Equations (8-37) through (8-39). It

should be noted that only elements on and above the main diagonal of _T W F need be

calculated and stored.

8.2.3 COVARIANCE MATRIX TRANSFORMATIONS

The converged estimate, 2, covariance matrix, PAx, and correlation matrix, C_._z, re-

sulting from the differential correction process correspond to the epoch time, to. The
A

spacecraft state vector components of x can correspond to Cartesian coordinates in mean

of B1950.0, mean of J2000.0, or true of date axes; classical Keplerian orbital elements;

spherical coordinates; or DODS variables. For discussion purposes, the case where x-

contains one spacecraft state vector is addressed and the first six components (the state
A

components) of x are denoted by g. The vector g can optionally be

i XI xl
v I
- . V I

ZI zl

xY I
r-/ I

__ L,.__lMean of
B1950.0 or

J2000.0

True of

Epoch

a r X

e ;
= = = X3

X5

_ Keplerian Spherical _ X-- DODS

Elements Elements Variables

(8-44)

depending on the variable set used in the differential correction process. The upper left

6 x 6 submatrix of P_,,, denoted PAs, also corresponds to the variables used in the

differential correction process.

GTDS transforms the estimated state, g, and its covariance matrix, PAs, tO any of the

other variable sets shown above. The constant solve-for parameters and consider parame-
A

ters in x and Y of the original differential correction problem are not coordinate

dependent. Only the state (position and velocity) depends upon the coordinate system

utilized. Therefore, only the subset g of _ and submatrix PAs of PAx need to be consid-

ered in the coordinate transformation.
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If the sets to which _ and Pa, are being transformed are denoted by

nonlinear transformation can be written as
and Pa,', the

g'(to) = h[_-(to)] (8-45)

Transformations of this type between Cartesian and spherical coordinates are presented in

Section 3.3.4 and between Cartesian and Keplerian elements are presented in Sec-
tion 3.3.8.

To transform the covariance matrix, Pas, Equation (8-45) is linearized, yielding

_-s'(to) = H(to) A-S(to) (8-46a)

where the transformation matrix from the unprimed to the primed system is given by

H(to) = (0_"] (8-46b)

_. OSlt=to

These partial derivatives between Cartesian and spherical coordinates and Cartesian and

Keplerian elements are presented in Sections 3.3.4 and 3.3.8, respectively. The covari-

ance matrix, PAs, is defined as

Pas(to) = e{[/_s(to) - A--ff(to)] [/_s(to) - AS(to)] T} (8-47)

^ A

where As and As correspond to the position and velocity components of Ax and Ax

defined previously. The covariance matrix of transformed variables, Pa_', is defined as

PAs'(to) = _{[ l_s' (to) - _-s'(to)] [/_s' (to) - 7_-s'(to)] T} (8-48)

Substituting Equation (8-46a) into Equation (8-48) yields

PM(to) = H(to) Pas(to) HT(to) (8-49)

A second type of transformation is the propagation of the estimate, _, and the covariance

matrix, Pax. The estimate, _(to), is propagated by integrating the equations of motion

from initial conditions, _(to), to other times of interest.
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The propagation of the covariance matrix is performed using the state transition matrix
from time to to the time of interest. In deriving the statetransition matrix, model parame-
ters other than those estimated (solved for) can be consideredas uncertain in the propa-
gation process.The a priori values of the uncertain state and model parameters (whether
solved for or considered) at epoch time to are denoted by _(to) and their covariance

matrix by PAu(t0). At any later time t, they are given by

(8-50a)

and

(8-50b)

It is assumedthat _ and Pauare composedof state components g and uncertain model
parameters g*. Perturbations about if(t) are related to perturbations about the a priori

values as follows:

A--if(t) = _(t, to)Au(to) (8-51)

where the transition matrix tp is given by

Eo ,ito =to!1_(t, to) = t (8-52)
I I
I

with

f Og(t) _ (8-53a)
• (t, to) = _._._
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and

(oF(t) (8-53b)0(t, to) = og'(to)J

By definition, the covariance matrix of _ at time t is

Pa_(t) = E{[Au(t) - A--u(t)] [Au(t) - Au(t)] T} (8-54a)

Substituting Equation (8-51) into Equation (81-54a) yields

PA_(t) = ¢(t, to)Pau(to)_bT(t, to) (8-54b)

The covariance matrix of state (upper left 6 x 6 submatrix of PAu) is obtained by

partitioning _ and Phu into their g and g" subparts as follows:

Pas(t) = _(t, to)PAs(t0)_T(t, to) + 0(t, to) Ca_Au.T _T(t ' to)

+ _(t, to)CAsAu. 0T(t, to) + 0(t, to)PAu" 0T(t, to)

(8-55a)

If no uncertain model parameters are included in the propagation, Equation (8-55a) re-
duces to

PAs(t) = q)(t, to)PAs(to)tI)T(t, to) (8-55b)

From the same partitioning, the correlation between the state g and U" is given by

Casau.(t) = _(t, to)Ca_a_. + O(t, to)Pau" (8-56)

8.2.4 COMPUTATIONAL PROCEDURE FOR THE DIFFERENTIAL

CORRECTION PROGRAM

This section describes conceptually how the estimation and covariance equations are

solved in GTDS. Figure 8-1 shows a computational flow schematic, which aids in the
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Figure 8-1. Computational Sequence for the Differential Correction Program
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discussion. The figure is divided into functional blocks, and the discussion is similarly

organized. The logic shown in Figure 8-1 is not the same as the specific source logic in

GTDS but is presented to characterize the concepts. The circled letters in the following

discussion refer to specific locations in the computational sequence illustrated in Fig-
ure 8-1.

8.2.4.1 A Priori Input

The process is initialized by specifying all necessary input data at (_). This includes the

estimated and considered variables and their covariances, as well as measurement

timespans and times to which the best estimates of the state and covariances are to be

propagated. The state input is optionally expressed in any of several convenient coordi-

nate systems. It is transformed to the basic coordinate system used in GTDS (i.e., mean

equator and equinox of B1950.0, mean equator and equinox of J2000.0, or true equator

and equinox of a given epoch) for subsequent processing. These transformations are

described in Chapter 3.

8.2.4.2 Measurement Data Management

The next step is the preparation of the measurement data for processing at (_). This

encompasses relocating the data within the specified measurement span from the original

input device (single or multiple tapes, disk, or keyboard) to a working file convenient for

subsequent retrieval during processing. During this relocation function, the data sequence

can optionally be edited considering the type of measurement, the source of the data, the

tracking station, and the timespan between adjacent points. The data on the working file

are chronologically numbered, and the number of the data point that bounds the initial

epoch time, to, from below is recorded. The data management function also includes

determining whether the initial epoch time is less than the first data time, between the

first and last data time, or larger than the last data time. For the first case, the data are

processed sequentially from the first point at tl to the last point at tm. For the second

case, the processing starts backward in time from the initial epoch to the first data point.

It then switches back to the initial epoch and proceeds forward in time to the last data

point. In the third case, the data are processed backward in time from the last (chrono-

logical) data point to the first data point.

8.2.4.3 Outer Iteration Loop

The outer iteration loop begins at @ or @. Normal GTDS operation starts at (_) with

initialization of the inner processing loop point counter, j, and subsequent integration of

the ephemeris from measurement point to measurement point within the inner loop (at
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1_). An alternative schemebegins the outer loop at @ by calculating and storing the
ephemeris and state transition matrix over the entire differential correction timespan
(To to Tf).

8.2.4.4 Inner Processing Loop

The inner processing loop starts by retrieving the first data point to be processed from the

working file at (_). Under normal operation, the nonlinear equations of motion (see

Chapter 5) and associated variational equations (see Chapter 4) are numerically inte-

grated (see Chapter 6) to the data time at (_. Alternatively, if the ephemeris and state

transition matrix are generated and stored at @, their values are interpolated to the

measurement time at (_). The best estimate of the measurement and its related residual

A---_j are calculated (see Chapter 7). Editing is performed based on the magnitude of this

residual (see Section 8.6.2.1). If the measurement passes the editing test, the single row

of the F matrix corresponding to the measurement is computed at (_). To minimize

core storage, the matrix products F T W _ and F T W F are accumulated as each row of

F is calculated, as described in Section 8.2.2. It is apparent from Equation (8-23) that

only these matrix products are required for determinating the estimate. All symmetric

matrices (e.g., FTw F) are stored in upper triangular form. On the last iteration, the

matrix products F T W F, E T W E, F T W E, and E T W F are accumulated for subsequent

use in computing the covariance and correlation matrices. At (_) tests are performed to

determine if all m data points have been processed. If they have not, the measurement

point counter j is incremented or decremented, depending on whether the data are being

processed forward or backward in time. The procedure then returns to the beginning of

the processing loop to retrieve the next point to be processed.

8.2.4.5 Estimation Computation

When all m data points have been processed, the complete matrix products F T W and

F T W F are available at @ as is the measurement residual vector Ay. On the last

iteration, F T WE, ETw F, and ETw E are also available. The best estimate of the^
perturbations Axi+l and variables xi+l are then calculated via Equations (8-23) and (8-24)

at C)" The iterated residual editing procedure (see Section 8.6.2.2) is then used to refine

this estimate.

8.2.4.6 Termination of Outer Iteration Loop

After determining an estimate at @, the iteration is complete and convergence tests are

performed at (_). The convergence criteria are described in Section 8.6.3. If the itera-

tions are converging, the iteration counter i is tested against the maximum number of
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iterations allowable. If the maximum has not been reached,the iteration counter is incre-
mented and processingproceedsthrough (_ to begin the next iteration at (_). At (_ the
measurementresidual vector canbe usedto edit the data asdiscussedin Section 8.6.2, as
well as to determine iteration statistics as discussedin Section 8.6.4. If the convergence
test at (_) determines that divergenceis occurring, processingcan be terminated. If the
iteration hasconverged,or the maximum number of iterations hasbeenreached, then the
covariance and correlation matrices at epoch to are calculated at (_). Finally, the state
vector, the covariance matrix, and the correlation matrix can be transformed to other
spaceand time sets as described in Section 8.2.3.

8.3 ERROR ANALYSIS APPLICATION

The weighted least-squares estimation algorithm and the associated covariance and corre-

lation matrices, derived in Sections 8.2 and 8.2.1, are summarized below.

Estimation Equatioq

^ ( )AX|+I = [FiT W Fi + P_xo] 1 FiT W Ay i + P'_AIAxo&i (8-57)

Covariance of E_im0I¢

= _ Pazo + CaxoAzT p-_A1Pax [F v W E E w W F F z W E axo

+ P'AA1 ET FT P_A_xo] _Taxo Caxoaz W F + W F +

Correlation of Estimate and Consider Variobl¢,s

(8-58)

p-laxo Caxoaz - F TCaxaz = _[ W E Paz0] (8-59)

where

= [FTW F + P_lo]-I (8-60a)

Paxo= E{(_-o - x--)(_-o- x-) T} (8-60b)

Pax = e{(_ - x-)(_ - x-) T} (8-60c)
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Pa,o = _{(Zo- z--)(_o- z-)T} (8-60d)

= e{(Zo-xO( o-z-)T} (8-60e)

Caxaz = /_{(_ - x--)(Zo- z-)T} (8-60f)

k

A
and _ is the converged x i.

In Equations (8-57) through (8-59), only the estimator requires measurement data. The

equations for the covariance and correlation matrices require only the statistics W of the

measurements, which are usually known for specific classes of trackers and sensors.

Therefore, if it is assumed that the a priori reference trajectory, R-o, is the best estimate,

the estimation equation can be omitted and the covariance and correlation matrices can

be determined for specific mission sensors and measurement profiles. It must also be

assumed that the mathematical models in the program accurately characterize the physi-

cal situation. Since actual measurements are not required, these operations can be per-

formed during preflight studies to determine the following:

• The effect of measurement data errors (random and systematic), measurement

timespans, and sampling rates on the accuracy of the estimated state and

model parameters

• The effect of the trajectory dynamics and the trajectory/sensor relative geome-

try on the accuracy of the estimated state and model parameters

• The relative effects of different types of measurements on the accuracy of the

estimated state and model parameters

Such problems are referred to as error analysis problems, since they are solely concerned

with the influence that errors in problem variables have on the accuracy of the estimate.

This type of analysis can strongly influence the design and enhancement of spacecraft

missions, as well as establish requirements for measurement sensor accuracies, sampling

rates, tracking times, and sensor locations. Currently this error analysis capability is only

available for ground tracking measurement data.

The method for evaluating Equations (8-58) and (8-59) in GTDS is nearly identical to that

for estimation applications. An a priori estimate of the solve-for and consider variables,

X-o and _0, along with their covariance and correlation matrices, Pax0, PAz0 and CaxoAzo,

is specified. The measurement schedule and measurement uncertainty W is also specified

a priori. The program then proceeds to integrate the nonlinear differential equations of

motion and their corresponding variational equations to the measurement times and
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computesthe measurementpartial derivatives.The rows of the matrices F and E in Equa-
tions (8-58) and (8-59) are accumulated as the measurement statistics are processed.
Ultimately, the covarianceand correlation matrices, Paxand Caxaz,are calculated at the
epoch time. The covariance and correlation matrices are then propagated to specified
times T1, T2, ..., Ts by means of Equations (8-51), (8-52), (8-53), and (8-55). Analo-
gously to the transformations presented in Equations (8-45) through (8-49), the time-
transformed covariance matrix, Pas(Ti), which is a submatrix of Pax(Ti), is itself
transformed to the _-'system.From the nonlinear transformation

g'(Ti) = h[g(Ti)] (8-61)

a linearization yields

As'(Ti) = H(Ti) A-ff(Ti) (8-62)

where

0S'.]I=Ti

(8-63)

A S

The covariance matrix of s (Ti)is thus formed by appropriate substitution as

A t -- A p

PAs'(Ti) = e{[ AS (Ti) - As'(Ti)][ AS (Ti) - as'(Ti)] T}

= H(Ti) PAs(Ti) HT(Ti)

(8-64)

The correlation Ca_az(Ti) is transformed to Cas,az(Ti) as follows:

Cas,az(Ti) = _e{[ _,(Ti)_ _-'(Ti)] [Zo- z] T}

A i
= e([ as(Ti) - as'(Ti)] [Zo - z] T}

= e(H(Ti) ^[As(Ti) - As(Ti)] [2-0 - _-]T}

= H(Ti) Ca_az(Ti)

Since the estimation equation is not being solved, iteration is unnecessary.

(8-65)
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Differentiating Equation (8-23) with respect to Z and ignoring both the iteration notation

and the _- dependence on the matrix of measurement partial derivatives, the variation of

the least-squares estimator with respect to the consider parameters is

A

3Ax _ (F T W F + PTx_0)-1 F T W E (8-66)
0z

A

Within the bounds of linearity, the responsiveness of the components of Ax to perturba-

tions in the components of Z are given in the epoch sensitivity matrix

( 0 Axi ) (8-67)Az,

From Equations (8-51) through (8-53) for the state vector g, the perturbation about a

given value of s is

A

/_s(t) = (I)(t, to) As(to) + 0(t, to)A-if" (8-68)

A

Differentiating As(t) with respect to if', the variation of the state components with respect

to the consider dynamic parameters is obtained as follows:

^0As(t) = _(t, to) + 0(t, to) (8-69)
on" L 0g J

Then the time propagation of the matrix of functional sensitivities is

s(t) = (°2s(t)ouj" Au;)
(8-70)

As in the transformation of the covariance matrix from Pas to Pas', a simple chain rule

calculation yields the variation of the transformed state with respect to the consider vari-

ables

A I

(gAs (t)/_0g(t)/ (8-71)
0As (t) / ^') = ( j
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To give more insight into the apnolicability of the sensitivity quantities, the ith component

of the least-squares estimator As is written in nonlinear functional form as

^ (8-72)asi =

By expanding _(z-) in a Taylor series about z = _-o, the following first-order approxima-
tion is obtained:

Asi = _i(z-) = _i(Z0) + (-_zj)Azj (8-73)

If the errors in the Z parameters are uncorrelated in a Bayesian sense (as they are as-

sumed to be in GTDS), and if the linearity assumption is valid, an estimate of the vari-
^

ance of Asi due solely to the variability in _- is obtained. In particular, this variance

estimate is given by invoking the variance operator on both sides of the above expression
^

for Asi and noting that N(_0) is a constant and that the Azj values are uncorrelated.

Therefore,

,,,_ t.--_-zj ..] o'_,i (8-74)

J

Assuming the linearization is valid, it is easily seen that Azj = aazj in the sensitivity

analysis. Hence, the sum of squares of the sensitivities for a given state component over

all consider parameters plus the excess of the (i, i) element of the consider covariance of
^ A

As over a_^s (z-) yields the total variation observed in Asi. This excess quantity is the (i,i)
element of the normal matrix (measurement noise variance component) since the covari-

ance equations were derived under the assumption that ff and 20 are uncorrelated, thus

uncoupling their effects on variance estimation.

It would appear that since an estimate is not actually being determined, it should make

little difference whether model parameters are associated with the solve-for vector, x, or

the consider vector, Z. A subtle difference does exist, however. Components of the con-

sider vector, Z, are maintained at their a priori specified values throughout the processing

and therefore have no possibility for modification through estimation. As a result, their

covariances never differ from those initially specified, i.e., Paz0 in Equation (8-58). The

solve-for variables, x-, have their values continually modified through the estimation
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process,which is reflected through the changesin the variance elements in PAx.Because
of the coupling, the uncertainty of the state components is affected differently if the same

model parameter is associated with x rather than with z.

8.4 SEQUENTIAL ESTIMATION (Not Currently Available in GTDS)

In the approach taken to the basic orbit estimation problem in the preceding sections of

this chapter, the measurements are processed by classical least-squares methods, i.e., by

processing the data in batches. The solution to the problem is the state vector (the system

parameters or unknown constants) which is estimated from a set of measured data. Since

the problem is nonlinear, the solution is linearized about the a priori state estimate and

then iterated to minimize the loss function. This approach requires considerable computa-

tion time and cannot be applied to realtime situations.

An alternative approach is to perform the data reduction and parameter estimation in a

sequential or recursive manner. The process is begun by making an initial estimate of the

state vector from a minimum data set or from a judicious guess. Each new data point is

combined with the previous parameter estimate by appropriately weighting the data point

to give an improved estimate of the state. This process is repeated as each new data point

is reduced. Hence, the procedure can be interrupted at any time and the best estimates of

the system parameters and their uncertainties based on all accumulated data to that time

are known. Other advantages of sequential weighted least-squares estimators are that at

each step the calculations are fixed in size and format and that the need for storing

previous data points is eliminated. Under certain assumptions, the sequential weighted

least-squares estimator is identical to the Kalman minimum variance estimator. Addi-

tional discussion of sequential weighted least-squares and minimum variance estimation

can be found in Reference 2.

The derivation of the Extended Kalman Filter from recursive weighted least-squares esti-

mation is discussed in Section 8.4.1. Because of the sensitivity of Kalman filters to dy-

namic model errors associated with orbit generation, filters have been designed to

adaptively estimate the true value of the unmodeled acceleration along with the state. This

approach, dynamic model compensation, is discussed in Section 8.4.2. In Section 8.4.3,

statistical adaptive filtering, which eliminates the need to specify a priori noise statistics,

is discussed.

8.4.1 DERIVATION AND APPLICATIONS _OF THE EXTENDED KALMAN

FILTER

In reconsidering the weighted least-squares problem described in Section 8.1, an

m-component measurement vector y is assumed. The nonlinear regression equation
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(Equation (8-1)) is linearized about a reference state, X-o,as shown in Equation (8-7).
A

The best estimate, x, in the classical weighted least-squares sense, is given by Equa-

tions (8-10) and (8-11) as

^ A

Xm = X--0 + Axm (8-75a)

where

A

AXm = (F T W F) -1 F T WAy (8-75b)

The subscript m indicates that the solution is based on an m-component measurement

vector, and the quantities F, W, and Ay are defined by Equations (8-6), (8-12), and

(8-8), respectively. If one more measurement is included, the correction has exactly the

same form, i.e.,

A

Axm+l = (F 'T W' F') -1 F 'T W' Ay' (8-76)

where F', W', and Ay' are related to F, W, and A-y as follows:

F' = (8-77a)

Ew!:lW' = --4- (8-77b)

0 II

Ay' (8-77c)

and Fro+l, win+l, and Aym+a correspond to the (m + 1) st measurement. In other words, the

original matrices and vectors are augmented to include the next measurement.
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Substituting Equations (8-77) into Equation (8-76) gives

( E:z_x_,, Frll Fr÷_l I [F T Frm,l]= I
Iw

(8-78)

The quantity in parentheses in Equation (8-78) is the inverse of the covariance matrix of
A

error, Pax"÷,, for the weighted least-squares estimate, AXm+l, i.e.,

Pax"+_ = (FT W F + FWm÷lWm, l Fm÷l) -1 (8-79a)

However, FTw F is the inverse of the covariance matrix, Pax', which is based on

m measurements. Therefore,

P_m÷l = (P_m + FTm÷I Wm+l Fro+l) -1 (8-79b)

k

Equations (8-78) and (8-79a) are expressions for the state correction estimate and the

covariance of the error in the estimate obtained by processing (m+l) measurements.

These expressions can be written more conveniently in the following recursive form:

^ ^ (8-80a)
AXm+l = Axm + AX

Paxm.l = Pax" + AP (8-80b)

^
where Ax and AP represent the changes in Axm and Pax" caused by the (m + 1) st meas-

urement. This form allows the state vector and covariance matrix to be determined as

each measurement is sequentially processed.

As shown in Appendix E, Equation (8-80b) can be written as

Pax.,+, = Pax,,, - Pax,,, FT+I [w_+l + Fm+l Pax" FT+I] -1 Fm+l Pax,. (8-81a)

or

Pax'÷, = Pax,, - K Fm+l PAxm = (I - K Fm÷l) PAxm (8-81b)
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where

K = Paxm FTm+I [W_÷l + Fm+l Pax., FTm+:]-1 (8-82)

Substituting Pax=,1 from Equation (8-81b) into the first term on the right-hand side of

Equation (8-78) yields

A

AXm+ 1 -- (I - K Fro+l) Pax= [F T WAy + FTm+I Win+ 1 Aye+l] (8-83a)

Substituting Equations (8-75b) and (8-81b) into Equation (8-83a) yields

^ a (8-83b)Axm+ 1 = (I - K Fm+l) AX m + PAx=÷1 FTm+I Wm+l Aym,I

In Appendix E it is shown that

K = Paxm+l FT+I Wm+l (8-84)

Therefore, Equation (8-83b) can be written as

A A A

AXm+l = AXm + K [Aym, l - Fm+l AXm] (8-85)

Summarizing the above results,

A A

Xm+ 1 = X"0 + Axm+ 1 (8-86a)

A A A

AXm+l = Axm + K [Aym+ 1 - Fro+ 1 Axm] (8-86b)

Pax=÷1 = Paxm - K Fm+l Paxm = (I - K Fm+l)Paxm (8-86c)

K = PAxm FTm+1 [W_+ 1 + Wm+l PAxm FTm+I]-1 (8-86d)
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"--- where

Fm+l - _)Ir:g0

and

Aym+l -- linearized (m + 1) st measurement (see Equation (8-8))

Wm_l = variance of the (m + 1) st measurement, e.g., Oam+l

The preceding recursive form of the weighted least-squares estimate yields the update

equations for the Extended Kalman Filter. The weighted least-squares estimate is a mini-

mum variance estimate because the measurements are weighted with W = 1/o 2. This is

the condition necessary for Equation (8-79a) to be the covariance matrix of error. The

matrix K is defined as the Kalman gain. For additional discussion of Kalman filter theory,

see References 6, 7, and 8.

Assuming that FZm+_ in Equation (8-84) is a matrix whose elements are all unity, then

each element of the gain matrix, K, is a ratio between the statistical measure of uncer-

tainty in the state estimate, Paxm, l, and the uncertainty in the measurement, O_m+l.

From the fundamental definition of the covariance matrix given in Equation (8-32), a

more convenient form for Paxm,l can be derived using Equation (8-86b), as follows:

P_Lxm+ 1
A A T

= _{AXm+l AXm+l}

A A

= E{[(I - K Fm+l) Axm + K Aym+l] [(I - K Fm+l) Axm

A A T
= /3{[(I - K Fro, l) Axm + K Aym+l] Axm (I - K Fro+l) T

+ [(I - K Fro+l) ^AXm + K Aym+l] AyT+I K T}

A A T
= (I - K Fm+l) _{Axm AXm} (I - K Fm, l) T

A T
+ K _{Aym+ 1 Axm } (I - K Fro+l) 7

A
+ (I - K Fro, l) /?{AXm AyT+1} K T + K g{Aym+l AyTm÷l} K r

+ K Aym+l] T}

(8-87)
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Assuming uncorrelated measurementerrors, then

A T A
e{AYm+l AXm} = E{Axm AyT, I} = 0 (8-88)

By definition

A A T

E{ Axm Axra } = PAx,,, (8-89a)

and

E{Aym+I AyTm+l} = w_÷ 1 (8-89b)

Substituting Equations (8-88) and (8-89) into Equation (8-87) yields

PAx=,_ = (I - K Fm+l) PAxm (I - K Fm+l) T + K Wmll K T (8-90)

Equation (8-90) is preferred over Equation (8-86c) because, to first order, it is insensitive

to errors in the filter gain, and it is better conditioned for numerical computations, since it

is the sum of two symmetric nonnegative definite matrices.

Up to this point, the effect of adding one more measurement to a set of m measurements

has been considered. These results will next be generalized to indicate sequential esti-

mates without dependence on the size of the measurement vector, that is, j will represent

the measurement counter, replacing m in the subscripts.

The prediction formulas for the Extended Kalman Filter follow from the discussion in

Section 8.2.3 concerning the timewise propagation of state perturbations (Equa-

tions (8-51) through (8-53)). Including the state noise, _, with zero mean and covariance,

Q, the prediction equation can be written as

A A

Ax(tj+I It j) = (l)(tj+l I t j) mx(tj It j) + _j+l (8-91)

A

where Ax (tj+l [ tj)denotes the best estimate of the correction at time tj+l based on proc-

essing data through time tj, and _(tj+l [ tj) is the state transition matrix. For prediction
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purposes, the state noise, _j+_, in Equation (8-91) is set equal to zero. The predicted

covariance matrix at time tj+l is obtained from Equation (8-91) as follows:

P_x(q+l I tj)
A A T

= _{Ax(tj+lltj) AX (tj+l It j)}

= e{[o A_x(tjI tj) + _+11[,i, Ax(tj I_) + _+,]T)
(8-92a)

= (_{[O Ax(tjltj) + _j+,] z_x T(t 5ltj)(I )T + [O Ax(tjltj) + _j+,] _jT}

AT
^ T 0 T e{_+l Ax (tj I tj)} 0 T= • e{Z_x(tjltj) Ax (tilt j)} +

A

+ • e{ ax(tj Itj) _+1_+ e_j+l _+1}

A

Assuming that the noise, N, and the state, Ax, are uncorrelated, Equation (8-92a)
becomes

Pax(tj+l It j) = (I) PAx(tj I tj) ¢T + Qj+1 (8-92b)

where QJ÷_ is the covariance of the state noise, i.e.,

Oj+1 = e{_+l _jjTI} (8-93)

To use this formulation of the Extended Kalman Filter, a reference trajectory must be

generated. This is done by numerically integrating a nonlinear second-order differential

equation (see Equation (5-2)) of the form

_,_f(t) = g(_-, t) (8-94)

where _ is a known function of the state variables, X is an n-dimensional state vector,

x-(t0) = x-0, and t _> to.

The predicted measurement residual error, r(tj+l It j), is

r(tj+l l tj) = y(tj+l) - Fj+I _(tj+lltj) (8-95)
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where _ (tl.l [ tj) is obtained from the integration of Equation (8-94) with the initial state
for the integration obtained from the previous state updated by Equation (8-91), and the
predicted measurement residual uncertainty, Y(tj.1 It j), is given by

Y(tj.1 Iq) = E{r(tj+l It j) rT(tj+l It j)} = Fj+I Pax(tj.1 It j) Fjr.l + wj-11 (8-96)

A comparison of these residuals with their theoretical statistical properties provides a

means of judging the performance of the filter (see Section 8.6.4).

Equations (8-91) and (8-92b) are used to predict the state correction and covariance ma-

trices at a future time tj.1, based on the best estimate at the last measurement at time tj.

The next measurement, yj÷l, is then used to update the state correction and covariance

matrices (Equation (8-85)). These steps are repeated until all the measurements have

been processed. The advantage of this recursive estimator is that the estimate of the state

and covariance based on processing m + 1 measurements uses the information contained

in the (m + 1) st measurement plus the state and covariance based on m measurements.

The entire process of accumulating sums and inverting matrices does not have to be

repeated when a new measurement is processed. The error covariance of the filter is

inversely proportional to the measurement noise from Equation (8-79b). Large measure-

ment noise implies that wm÷l is small, and hence Pm.1 decreases by only a small amount.

Small measurement noise implies a large win.l, and consequently a relatively large de-

crease in Pro,1.

The recursive equations can be applied from the first point on. In that case, the reference
A A

trajectory is chosen as x (to) = go, the a priori state; hence, Ax(to l to) = 0. There are

two ways in which the Extended Kalman Filter can be used, with an updated reference

trajectory or with a non_pdated reference trajectory. In the nonupdated reference ap-

proach, the corrections Ax are accumulated, and the a priori reference state, go, is cor-

rected only once, at the final time after all data are processed.

The updated state vector at the final time, based on processing all the data, is then

smoothed back to the initial time to obtain the best estimate of the state at all intervening

times. The covariance matrix can also be propagated backward in time via Equa-

tion (8-92b) to obtain the timewise variation of the uncertainty of the state based on

processing all data.

If the batch of measurements is sufficiently large, a new initial reference state can be

determined from the following equation:

^ (8-97)X-'(to) = X-(to) + Ax (to I tf)
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where

A

Ax(t0ltf)

tf

= new best estimate of the state at to based on processing all

measurements

= time of the final measurement

This reference state will be closer to the true initial state than will x(to). Using the new

state, the data are reprocessed, i.e., the solution is linearized about x-'(to), and the filter-

ing process is repeated over the same batch of measurements. This process is repetitively

applied until there is no change in the initial reference state. At that time, convergence to

the best estimate of the state has been achieved, i.e., a solution has been found that is as

close to the true solution as the neglected nonlinear effects will allow. These global itera-

tions involve the same procedure as that which is followed in the batch processor (iterated

weighted least squares). This mode is used when the signal-to-noise ratio is small, and a

good initial estimate of the state is available.

Another approach (used primarily when the signal-to-noise ratio is large or when a good

estimate of the state is unavailable) is to update the reference trajectory after processing

each subset of the data vector y. This allows large errors in the a priori state, X-o, to be

corrected early in the process, thereby assuring that the processing of later data satisfies

linearity. This, in turn, improves the outer loop (global iteration) convergence. Lineariza-
A

tion about _ (to) results in Ax(to I to) = 0. Hence, using Equation (8-91) and relineariz-

ing about each point yields

Ax(t It j) = 0 [tj <_ t _< tj+l (for all j)] (8-98a)

Since, due to the relinearization,

Ax(tj+l [tj+l) = _(tj,11tj+,) - _(tj+, Itj) (8-98b)

substitution of Equations (8-8), (8-98), and (8-99) into Equation (8-86b) gives

A (tj÷l I tj+l) = A (tj+l I tj) + K(tj+l) {y(tj+l) - f[A (tj+ 1 I tj), tj+l] ) (8-99)

The preceding result is used for updating the state vector. The updated reference mode is

ideally suited to realtime applications.

The Extended Kalman Filter for continuous-discrete systems as described above is the

result of the application of the linear Kalman filter to a linearized nonlinear system, which
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is relinearized after each measurement.The procedure for the updated reference mode is
summarized below.

1. Store the reference state, _ (tl { tj), and the covariance matrix, Pax(tj I tj).

. Compute the predicted state at time tj,l by numerically integrating Equa-

tion (8-94), i.e., obtain _ (tj+l It j) given _ (tj [ q).

. Calculate the state transition matrix from time tj to time tj+l, either analyti-

cally or numerically, as discussed in Section 4.10.2,

:ro:<,+,)]tIi[(tj+a, tj; _(tjlto) ] L'_ _m=;<0,i'j) (8-100a)

4. Compute the predicted error covariance matrix at time tj,i via Equa-

tion (8-92b)

PAx(tj+l { tj) = O(tj+l, tj) P_(tj I tj) 'I_T(tj+l, tj) + Qj+I (8-100b)

5. Compute the measurement via Equation (8-1), assuming no noise,

y(tj+l) = f[ xA (tj+ 11 tj), tj+d (8-1OOc)

6. Compute the partial derivative of the measurement via Equation (8-6)

Fj+_ = l'%a[___] (8-100d)
toxJ sr=_('i+i I'i)

. Test whether this is an acceptable measurement, i.e., determine whether the

absolute value of the residual (observed-minus-computed value) is less than the

root-mean-square (RMS) multiplier times the square root of the predicted

measurement residual uncertainty Y(tj+l { tj) in Equation (8-96). If it is not,

reject the measurement, increment j, and return to step 1.

8. Calculate the filter gain matrix via Equation (8-86d)

K(tj+,) = PAx(tj+aIt j) Fj_+,[Fj+,P_(tj+,It j) F[+,+ w;+',]-' (8-100e)
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9. Process the measurement y(tj+a) to obtain the updated state via Equa-
tion (8-99)

(tj+l I tj+l) = _ (tj+l [ tj) + K(tj+l) {y(tj+0 - f[ _ (tj+l I tj), tj+l]) (8- oo0

10. Compute the updated error covariance matrix at time tj+l via Equation (8-90)

P (tj÷ I tj÷l) ; [I - K(tj+l) Fj+I] Pax(tj+l I tj) [I - K(tj+0 Fj+I] T

+ K(tj+l) will KT(tj÷I)

(8-100g)

11. Increment j and return to step 1 to repeat the cycle for the next measurement.

12. Continue the cycle between step 1 and step 12 until a specified set of measure-

ment data is processed.

13. Integrate back to epoch and output the results utilizing the data to time tt, e.g.,

(to [ tt) and Pax(to [ tt), where tt represents the time of the final data point in

the set of measurements processed.

14. Continue the cycle between step 1 and step 14 until all the data are processed.

15. Make a final pass through the measurement data to compute the residual statis-

tics and print the final reports.

One of the main difficulties associated with the filtering approach to orbit determination

is filter divergence, i.e., the estimated (filtered) state diverges from the actual state. It can

occur when estimates of the state become more accurate and, hence, the covariance be-

comes smaller. As a result, the Kalman gain decreases and new measurements exert less

influence on the solution. The measurements, which are a realization of the true state,

have a smaller effect than the "learned" dynamical model. Therefore, successive esti-

mates of the state tend to follow the erroneous "learned" dynamical model and to diverge

from the true state, which is reflected in the measurements. Consequently, the estimated

covariance fails to represent the true estimation error.

Divergence can arise from the following sources:

• Linearization errors (e.g., measurement linearization)

• Computational errors (e.g., Pzxx loses its positive semidefiniteness)

• Modeling errors

• Unknown noise statistics
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Generally, the first sourcecan be minimized by iterating the solution (updated reference
trajectory). Computational errors can be minimized by square-root filtering algorithms
(Reference9) and program coding techniques (Reference10). Modeling errors can be
handled in either a nonadaptiveor an adaptive manner. The nonadaptivemethods modify
the filter structure to maintain the Kalman gain at somesuitable level for sustainedfilter
operation. The Modified Extended Kalman Filter (MEKF) by Torroglosa (Reference 11)
is a filter of this type. The adaptive techniques can be divided into structural and statisti-
cal methods. The structural or dynamic model compensation methods are designed to
adaptively estimate the true value of the unmodeled acceleration along with the state.
Tapley and his associates(References12, 13, and 14) have followed this approach,which
will be discussed in Section 8.4.2. The statistical methods are designed to correct the
basic filter to accommodatethe combined effects of all error sources,e.g., the neglected
nonlinearities, unknown noise statistics, and computational error effects, in addition to the
model errors. The Jazwinski Filter (Reference 15) is a filter of this type. Statistical adap-
tive filtering is discussed in Section 8.4.3.

8.4.2 DYNAMIC MODEL COMPENSATION FILTERING

The dynamic model compensation (DMC) techniques are designed to adaptively estimate

the true value of the unmodeled acceleration along with the state• A sequential estimation

method has been developed (References 12, 13, and 14) that compensates for the un-

modeled effects in the differential equations that define the dynamical process. The ad-

vantages of this method are as follows:

It can be used to obtain an improved estimate of the state vector in realtime

applications.

It yields information that can be used in postflight analysis to improve the basic

dynamical model.

The unmodeled accelerations are assumed to be a first-order Gauss-Markov process, i.e.,

they consist of the superposition of a time-correlated component and a purely random

component. The discussion of the mathematical model for this type of filter follows that

given in Reference 12. There the technique is applied to estimate the state of a lunar

orbiting spacecraft acted upon by unmodeled forces due to venting, water dumps, or

translational forces due to unbalanced attitude control reactions•

The equations of motion of the nonlinear dynamical system are given by

r = _- (8-101a)

v = ffm(g, % t) + ff_(t) (8-101b)
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where t- and v are the position and velocity components, _'mis the three-component
acceleration vector used in the filter-world or nominal dynamical model, and au is the
three-componentvector of all unknown and/or unmodeled accelerations.

The unmodeledacceleration, gu(t), is representedas a first-order Gauss-Markovprocess,
g(t), which satisfies the differential equation

g(t) = A(t)fit) + B(t)g(t) (8-102)

where A(t) and B(t) are coefficient matrices, g(t) is a three-componentvector, and U is a
three-componentvector of Gaussiannoisewhosecomponentssatisfy the a priori statistics

g{g(t)} = 0 (8-103a)

g{g(t) gT(t)} = I d(t- r) (8-103b)

The matrix I is a 3 x 3 identity matrix and 6(t - r) is the Dirac delta function. The

quantity A(t) is a 3 x 3 diagonal matrix of the time correlation coefficients

-l/T, 0 001A(t) = 0 - 1/T2 (8-104)

0 0 - 1/T

where T_, T2, and T3 are the correlation times, which are unknown parameters to be

estimated by including the vector T

_T = [T1 T2 T31 (8-105)

in the set of parameters to be estimated.

The quantity B(t) is a 3 x 3 diagonal matrix

E!° °olB(t) = b2

0 b3

(8-106)

where the bj are treated as specified constants.

8-37



When Equations (8-101) and (8-102) are combined with i" = 0, the dynamical system is

described by the following set of first-order differential equations:

r = _- (8-107a)

v = g'm(t-, _', t) + g(t) (8-107b)

e = A _ + B _(t) (8-107c)

T = 0 (8-107d)

If the state vector X-is augmented as

_ = [_TI _TI _TI _7 (8-_08)

the dynamical system in Equation (8-107) can be written as

x = _-(X-, 0, t) (8-109a)

X-(to) = X-o (8-109b)

where

_W = [vTI (am + _T[ (A_ + Bu--)TI 01 (8-109c)

and the initial conditions X-o are unknown.

For t > tj, where tj is a reference epoch, the solutions to Equation (8-107) in integral

form are

g(t) = f(tj) + V(tj)At + t if(f, v, e, t) [t - r] dr
J

(8-110a)

8-38



V(t) = V(tj) + t a(r-, V, E-, t)
dr

ti

(8-110b)

_(t) = E(t)_(tj) + .i(q) (8-110c)

T(t) = T(tj) (8-110d)

where

At = t-tj (8-110e)

and

_(t-, V, g, t) = gm(L _, t) + _(t) (8-1100

The matrices E(t) and _(tj) are defined as

a_ 0 !1
E(t) = 0 a2

0 0 a

(8-111a)

iT(tj) = [a,(1- a2)'/au, Ii a a(1- a22)'/au2 Ii a3(1- al)l/2u3] (8-111b)

where

ak = exp[-(t- tj)/Tk] (k = 1, 2, 3) (8-112a)

and

O'k = bk(2/Tk) 1/2 (k = 1, 2, 3) (8-112b)
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Equation (8-110) can also be written as

g(t, tj) = G[x-(tj), tj, t] + _ (t > tj) (8-113a)

where

z_ -- [o_7',,o,_', o_,_', 01 (8-113b)

is the state noise matrix which is due to the purely random components of the unmodeled

accelerations

m

O)j =

m

_t i(q) [t - r] dr
t]

It t i(tj) dr
]

i(t9

0

(8-114)

The statistics of _ are

e[w] = o (8-115a)

e[_ T] = Ojaij
rr Qrv
rv QVV

0

Qr_

Qve

Qee

0

(8-115b)

where d 0 is the Kronecker delta function and

Orr --

Sj (At) 4

4
(8-116a)
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Qrv = Qvr -
Sj (At) 3

2
(8-116b)

Or, = O_r - Sj ().At.2
2

(8-116c)

Ovv = Sj (At) 2 (8-116d)

Q_ = Q_ = Sj At (8-116e)

Qcc = Sj (8-1160

and

_v

_(1 - al)
Sj = 0

0

o2(1 o oj- a_) o
0 o'_(1 - a_

(8-117)

The measurement equation for the jthmeasurement is

= _[x-(tj),tj] + (8-118a)

where _ is the measurement noise that satisfies the following conditions:

e[n] = o (8q18b)

e[nn_l = R_6,j (8-118c)

and R is the covariance matrix of the measurement noise.
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The procedure then follows that of the ExtendedKalman Filter describedin Section 8.4.1,
with the following modifications:

1. The state is predicted via Equation (8-'113)with _ --- 0.

2. Equation (8-115) is used for Qj+I in the predicted covariance matrix of error.

3. In the filter gain matrix K, the matrix R from Equation (8-118c) replaces w -1.

4. The updated covariance matrix is computed via Equation (8-86c) rather than

Equation (8-90).

The algorithm requires a priori values for the augmented state, X-o, along with the a priori

covariance matrices, Pax0, Qj, and Rj.

When applied to the Apollo 10 and 11 missions, the DMC method gave the following

results:

. Its accuracy was limited by the measurement noise rather than by the model

inaccuracies.

. The unmodeled accelerations were primarily due to neglected effects in the

lunar potential, and the magnitude of the unmodeled accelerations was domi-

nated by the radial component.

3. The estimated values of unmodeled accelerations were repeatable from orbit to

orbit and from mission to mission.

4. The magnitude of the radial component of the unmodeled acceleration was

highly correlated with the location of lunar surface mascons.

The obvious drawback of the preceding filtering theories is that the noise statistics must

be supplied a priori. A remedy for this difficulty is discussed in the following section.

8.4.3 STATISTICAL ADAPTIVE FILTERING

Statistical adaptive filtering techniques are designed to correct the basic filter to account

for the combined effects of all error sources, e.g., neglected nonlinearities, unknown

noise statistics, computational errors, and model errors. One of the difficulties with filter-

ing is the determination of the proper value of Q, the state noise covariance. Additional

problems arise in determining the statistics associated with the measurement noise. Ef-

fects such as atmospheric refraction variation and random disturbances in the radar in-

strumentation are unpredictable. The assumptions that have been made are that if, the

measurement noise (Equation (8-1)), and _, the state noise (Equation (8-91)), have zero

mean. However, due to model errors and nonlinearities, this is rarely true. The goal of
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statistical adaptive filtering is to determine the actual mean and covariance of both the
state and measurementnoise so that better estimates of the state can be obtained.

Numerous investigators have developedadaptive sequential estimation techniquesbased
on the recursive Kalman filter equations (References15 and 16). The J-adaptivefilter is
discussedas an example of statistical adaptive filters. Jazwinski developeda sequential
adaptive estimator having the capability to track system state and model errors in the
presenceof large and unpredictable systemor environmental variations. The approachis
to add a low frequency random forcing function, representing the model errors, to the
differential equation representingthe systemmodel. The filter then estimatesthis function
as well as the state. The model chosen for this random forcing function is a polynomial
with time-varying coefficients. This particular approach is especially useful in parameter
identification problems.

It is assumedthat the estimator systemmodel is

".2..
x = _I(X-, t) + g2 if(t) (8-119)

where gl includes the accelerations that are well known, g2 includes possible unknown

accelerations and model errors in gl, and if(t) is a random forcing function.

If if(t) is a linear polynomial in time, the discrete form of the system model over the time

interval [tj, tj,l] is

_(ta,1) = _[x-(q), u-(t)] (8-120a)

if(t) = ff(tj) + u(tj) [t - tj] (8-120b)

where fi is modeled as a random constant to be estimated.

The measurement model is the same as in previous sections, i.e.,

y(tj) = f-[X-(tj), tj] + ff (8-121a)

where _is measurement noise with

E{_ff T} = R (8-121b)
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Hence, the complete dynamical system model is

(tj,, I tj) -- _[ _(tj I tj), _(tj+,I tj)] + (8-122a)

_tj_._I tj) -- n(tj Itj) + u(t_+_I tj) r (8-122b)

u(tj+l It j) = u(tjltj) (8-122c)

where

l" = tj÷ 1 - tj (8-122d)

To describe the system, the covariance and correlation matrices are defined as follows:

A

e{Ax(tj) z_xT(tj)} = P(qltj) (8-123a)

A A T
e{ Ax(tj) Au (tj)} = Cux(tj It j) (8-123b)

e{ z_x(tj) z_uT(tj)} = C.ax(tjltj) (S-123c)

A A T
e{ Au(q) Au (q)} = Uu_(tj I tj) (8-123d)

A
_'{ Au(tj) z_uT(tj)) = U_i(tjltj) (8-123e)

* (8-123f)e(Au(tj) _ur(tj)) = uaa(tj Itj)

where

Ax(tj) x-(tj) ^ (8-124a)-- - _(tj)
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A
Au(tj) = ff(tj)- -_(tj) (8-124b)

z_(tj) -- _(tj) - _(tj) (8-124c)

Let

• (tj,l I t_) = ¢ x-(tj)+ Wv(tj) + Wdu(tj) (8-125)

where

¢(tj+l Itj) = OX-(tj+l) (8-126a)
O_(tj)

/p(tj+lltj) = OX-(tj+l) (8-126b)
O_(tj)

_pd(tj,lItj) = OX-(tj+a) (8-126c)
ou(tj)

The Jazwinski Filter is derived by augmenting the state x-with the vectors o-and u and

using the Extended Kalman Filter in augmented form.

Equations (8-122b), (8-122c), and (8-125) can be combined to yield an augmented transi-

tion matrix

_b = I (8-127)

0
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The augmented form of the error covariance matrix is

P(tj I tj)

J

P

= Crux

cT
ux

Uuu Uua (8-128)

The augmented state, gain, and measurement matrices are

X = (8-129a)

K = (8-129b)

F = [FI 01 01 (8-129c)

Substituting Equations (8-127) and (8-128) into Equation (8-92b) and ignoring the state

noise yields

e(tj+l I tj) =

m m

_ _d

0 I r

0 0 I

- P C_ C6x-

C_ Uuu Uu5

C T Tux Uua U6u

m m

_T 0 0

_)T I 0

__ 1: I

(8-130)
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Expanding the right-hand side, the upper triangular elementsof P(tj+l It j) are

P(t]+l I t]) = Cpcr + _cTcT + _pdCTxCT+ ¢C_T + _,Uu._ r
(8-131a)

C_(tj+, I tj) = ¢ C_ + _ Uuu + _Pa UuT_ + r (¢ C6x + _ Uu6 + _Pa U_,6) (8-131b)

c_ (tj+_Itj) = ¢ C_x + _ Vu_ + _d u6_ (8-131c)

Uuu(tj+_I tj) = Uuu+ r Uu_+ r (Uua + r uaa) (8-131d)

Uua(tj+l I tj) = Uua + r U;_a (8-131e)

U6a(ti,, It]) = U6/_ (8-131f)

where all the terms on the right-hand sides of Equations (8-131a) through (8-131f) are

evaluated at (tj It j).

Substituting Equations (8-128) and (8-129) into Equation (8-86d) yields

KU

K°

U

m

P Cux

= Crux Uuu

C .T Uu_
UX

X

Uuu

U66

+ [FI

01

_°I

P

O] C_

C .x
UX

Cux C_x

Uuu Uu6

Uu_ Uu6

OI

OI
B

-1
(8-132)
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Carrying out the indicated matrix multiplications,

Kx

KU

K°

U

PF T (FPF T + Wfll) -1-

CtTxF T (FPF T + wj'll) -1

C-TuxF T (F P F T + will) -1

(8-133)

Substituting Equations (8-128) and (8-129) into Equation (8-86c) yields

P(tj,l Itj+_) =

k

B

Kx

KU

K°
u

I - KxF

\
IF101 0]

/
0 0

- KuF I 0

-K.F 0 I
U

P C_ Cax-

C T U.u Uua

cT T U_ u_ ux Uu6 ,_..

- P C_ Cax-

C_ Uuu Uu/l

c.T xux Uuu U_6

(8-134)

Hence, the upper triangular elements of P(tj÷l [ tj+l) are

P(tj+l I tj, 1) = (I - Kx F) P(tj+l I tj) (8-135a)

c_(tj,, I t_+a)= (I - KxF) C_(tj+l I tj) (8-135b)

Cax(tj+l I tj+0 = (I - Kx F) Cfx(tj+l I tj) (8-135c)

U.u(tj., I tj+,) = u..(tj., I tj) - KuF C,,x(tj+, I tj) (8-135d)
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Uu_,(tj+,I tj+_)= Uua(tj+_I tj) - XuF C,_x(tj+,I tj) (8-135e)

ua_(tj+_I tj+_)= ua,_(q+_I tj) - HaF C;,x(tj+_Itj) (8-1350

Substituting Equation (8-129) into Equation (8-100) gives the update equation for the

augmented state

m _ ....

X" I X- Kx

_" I = u + Ku

I _ K6
- --(tj+, [ ti+l) - - (tj+, I tj+0 - -

{_(tj+l) - f[ _'(q+l I tj), tj+l]) (8-136)

or

- A

X-(tj+1 I tj+0 = _(tj+1 I tj) + Kx {?(tj+l) - f[ _(tj+1 I tj), tj+1]}

_(tj+l I tj+l) _(tj+1I tj) + Ku{y(tj+1) f-[̂= - Z(tj+_Itj), tj+d)

(8-137a)

(8-137b)

u(t_+,I tj+,) = u(t_+_Itj) + K 6 {y--(tj+l) -- f'[ _=(tj+1 I t j), tj÷1]} (8-137c)

Equations (8-125) and (8-130) are the prediction equations for the Jazwinski Filter, and

Equations (8-133), (8-134), and (8-137) are the update equations. The inclusion of Equa-

tion (8-1350 is a modification by Torroglosa which keeps the covariance matrix of the

state from becoming nonpositive definite. In the original Jazwinski Filter, the uncertainty

in fl was maintained constant and, hence, Uua(tj+l I q) = Uaa. The initial conditions

_¢(0 I 0), Pt_(0 I 0), Uuu(0 I 0), and U66(0 I 0) must be specified. The correlation terms

C_x(0 10), Cax(0 I 0), Uu,_(0 I 0), and the initial values of _(0 10) and _-(01 0) are set

equal to zero externally.

8.4.4 COMPUTATIONAL PROCEDURE FOR THE FILTER PROGRAM

The computational sequence for the Filter Program is similar to that for the Differential

Correction Program (see Section 8.2.4). The computational flow schematic is shown in
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Figure 8-2. Both the figure and the accompanying discussion are divided into functional

blocks. The computational sequence is described below. The circled letters in this discus-

sion refer to specific locations in Figure 8-2.

8.4.4.1 A Priori Input

All necessary input data are specified at (_). This includes the estimated variables and

their covariances, the measurement timespans, and the number of measurements per set.

The state input can be expressed optionally in any of several convenient coordinate sys-

tems as in the Differential Correction Program. For subsequent processing, the state is

transformed into the mean equator and equinox of B1950.0 or J2000.0 system or into the

true equator and equinox of a given epoch system. The transformations are given in

Chapter 3.

8.4.4.2 Data Management

The measurement data are prepared for processing at (_) and (_). This encompasses

relocating the data for the specified measurement span from the original input device

(single or multiple tapes, disk, or keyboard) to a working file convenient for subsequent

retrieval during processing. During this relocation function, the data sequence can option-

ally be edited considering the type of measurement, the source of the data, the tracking

station, and the timespan between adjacent points. The data on the working file are

chronologically numbered, and the number of the data point that bounds the initial epoch

time, to, from below is recorded. The data management function also includes determin-

ing whether the initial epoch time is less than the first data time, between the first and last

data time, or larger than the last data time. For the first ease, the data are processed

sequentially from the first point at tl to the last point at tin. For the second case, the

processing starts backward in time from the initial epoch to the first data point, and it

then switches back to the initial epoch and proceeds forward in time to the last data point.

In the third ease, the data are processed backwards in time from the last (chronological)

data point to the first.

8.4.4.3 Processing Loop

The processing loop begins by retrieving the first data point to be processed from the

working file at (_. A test is made to determine the optimal integrator to be used consid-

ering the timespan between measurements at tj and q-l. A predicted covariance for the

measurement is calculated. The measurement, its residual, and the partial derivatives of

the measurements with respect to parameters being estimated are computed at (_), deter-

mining whether to accept or reject the measurement at (_). If the measurement is
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®
pRIORI INPUT

• SOLVE-FOR VECTOR:

• ESTIMATION ERROR

COVARIANCE:

• (SPECIFIED) ERROR
MATRIX:

• CORRELATION (IF ANY) :

• MEASUREMENT SPAN:

t0, x0(t0), PZ_x(t0)

Uuu (IF ANY)

U_t _ (IF ANY)

Cux, C_x, Uu_
TO, T!

• NUMBER OF MEASUREMENTS

PER SET

i = i+ 1 i

NO

®

u_(tj I tj) C_x(t j I tj)

UuG(tj I tj)

ryIEASUREMENT DATA MANAGEMENT

• EDIT ALL DATA OUTSIDE SPAN [To, Tf]

• NUMBER DATA POINTS CHRONOLOGICALLY

@.g,, t 1, I;2,,., tm

• IF t! < t o < tin,
DETERMINE MEASUREMENT POINT NUMBER

SUCH THAT t]' < to < tj+ 1

I • INITIALIZE J TO FIRST POINT TO BE
PROCESSED

• INITIALIZE SET COUNTER

® ;
RETRIEVE MEASUREMENT ]tj, y j, oj

o
• INTEGRATE TO ,_(tj I tj_l)

• CALCULATE

®[tj, tj_l; _(tjl tj_t)] P_x(tj I tj_l)

f[_ (tj I tj_l); tj] Fj

t IS THE RESIDUAL LESS THAN THE SIGMA
MULT,PLERT,MESTHEPRED,OTED
MEASUREMENTRES,DUAL_

© _YES

I • UPDATE: t(tj I tj) PAx(tj I tj)

• IF NEEDED: Uuu(tj [ tj) Cux(tj I tj)

NO l, I = ITERATION COUNTER

O _YES I J = MEASUREMENT POINTCOUNTER

I INTEGRATE BACK TO A PRIORI EPOCH 1_(to I t_) Pz_x(toI tp

o

®  YES
[ LASTPASSTHROUGHOATATO STOPJCOMPUTE RESIDUAL STATISTICS

Figure 8-2. Computational Sequence for the Extended Kalman Filter
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accepted,the Kalman gain is calculated; the state, state covariance matrix, and correla-

tion matrices are updated; and the processed measurement is output at (_).

8.4.4.4 Data Set Loop

If it has been determined at (_) that the last measurement of a set has been processed,

the updated state at the last measurement time and its covariance matrix are printed. The

updated state is then integrated backwards to the a priori epoch time and intermediate

output reports are printed. (See (_.) After it has been determined at (_ that all the

measurements have been processed, a last pass is made through the measurement data to

compute the residual statistics and print the final reports at (_).

8.5 COVARIANCE MATRIX INTERPRETATION

A
In the previous sections, equations have been presented for calculating the mean, x, and

the covariance matrix, Pax, of the errors in the estimated state and model parameters.

There is little difficulty in recognizing the value of the mean (or estimated) value, but

interpretation of the covariance and correlation matrices in terms of the uncertainty of the

variables is not as clear. Yet, the covariance matrix yields a great deal of information on

the statistical character of the variables. Some of these characteristics are described in the

following subsections.

8.5.1 AUGMENTED VECTOR AND COVARIANCE

The estimation process yields the mean, _, and covariance of errors, Pax, of the solve-for

variables and the matrix C_._z relating errors in the solve-for and consider variables. The

mean, z0, and covariance, PAw of the consider variables are known a priori. As an aid in

understanding the role of each of the matrices, the augmented (or expanded) state vector,

u-, is defined as (_-I z--)T . The best estimate (or expected value) of u is (_ I Z-o)T. The

covariance matrix of errors of O- is PALl, which can be partitioned into the following

components:

ICPax i

PA_ = _t ..... (8-138)!

_ Pa'o_I

where PAu is a positive definite symmetric matrix. Therefore,

CAz_ = C_c_ z (8-139)
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The submatrix Paz0remains constant throughout the processing, since the consider vari-
able uncertainty cannot be improved through estimation.

The following subsectionspresent a geometric heuristic interpretation of the covariance
matrices Pau, Pax, and/or Pazoin terms of hyperdimensional volumes of constant prob-
ability in the (p + q)-, p-, and/or q-dimensional Euclidean space of the vector compo-
nents.

8.5.2 HYPERELLIPSE PROBABILITIES

In the following discussion, the random vector X- with uncertainty Pax is considered. The

discussion is equally applicable to the random variables _ and z. Assuming that the

random vector x-(t) is normally distributed, it can be completely described by its mean

and covariance. The assumption that x-(t) is normally distributed is partially justified as a

result of an analogue of the Central Limit Theorem which states as follows: "If a large

number of random variables are combined in a reasonably complicated fashion to form a

single multivariate random variable, then this random variable will have a nearly normal

distribution."

For the following discussion, it is assumed that the random vector of errors, A--_-, about
A

the mean, x, is composed of six components. It is normally distributed with zero mean

and covariance PAx. Its probability density function can be written as

1 exp[ 1 N-fiT pix_ N-if] (8-140)px(A---ff) = (2x)3 [Paxl 1/2 -2-

If Pax is a diagonal matrix, x-has components that are statistically independent (uncorre-

lated), and px(A--x-) can then be factored into a product of six univariate functions of xl,

x2, ..., x6 (the one-dimensional marginal probability density functions of the six compo-

nents of the state). This constitutes a sufficient condition for independence of the mar-

ginal random variables Xl, ..., x6.

By virtue of its definition, Pax is a nonnegative definite matrix so that it has nonnegative

eigenvalues. Hence, a similarity transformation

Ay = S A---_ (8-141)

which diagonalizes Pax is always possible, since the hypersurface of constant likelihood

(constant value of probability density) in six-dimensional space is a hyperellipsoid, and

by a rotation of axes it is possible to use the principal axes of the hyperellipsoid as
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coordinate axes (i.e., to transform to another random variable spacehaving uncorrelated
or independent components). The _ in Equation (8-141) represents space coordinates

and is unrelated to the measurements.

Of interest is the probability that xl , x2 , ..., x6 lie within the hyperellipsoid

AxTp_x AX = / 2 (8-142)

where t is constant. By transforming to principal axes, this expression becomes

Ay2 Ay22 Ay2 = t2 (8-143)

where al, a2, ..., a6 are the eigenvalues of PAx. The transformation matrix from Ax to

Ay space is accomplished by the matrix of eigenvectors, S. By a second transformation,

Azi = Ayi/ai, the expression in Equation (8-143) becomes the equation for a hyper-

sphere in six dimensions

Az_ + Az 2 + + Az 2 = t 2 (8-144)

The probability of finding _ inside this hypersphere is

ff Ivolume (21zt)3 exp{ -l(Az12+ " " " + Az62)) dAztdAz2 " " " dAz' (8-145)

where the integration is carried out over the volume of the hypersphere of radius Ar,
where

Ar 2 = Az 2 + Az 2 + + Az62 (8-146)

Thus, the probability of finding AXl, Ax2, ..., Ax6 inside the hyperellipsoid
Ax T Pz_x Ax = t 2 is

e -1/2Ar2 f(Ar) dAr (8-147)
P_- (2z03

where f(Ar) is the spherically symmetric differential volume element.
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In six-dimensional space,Equation (8-147) is

1 _0 I 1 e-1/_2( _--4 t2 )1 (8-148)e -1/2At2 (7g 3 Ar 5) dAr = 1 - + + 2
Pr = (2_) 3 _"

For I = 1, 2, and 3, the probability is 0.014, 0.332, and 0.826, respectively. Also of

interest are hyperellipsoids of other dimensions. Considering an m-dimensional random

vector, where m --- 1 through 7, the probabilities corresponding to t = 1 through 4 (often

called la, 2a, 3a, and 4a probabilities) are as shown in Table 8-1.

Table 8-1. Hyperellipse Probabilities

1

1 0.683

2 0.394

3 0.200

4 0.090

5 0.037

6 0.014

7 0.005

0.955

0.865

0.739

0.594

0.450

0.323

0.220

0.997

0.989

0.971

O.939

0.891

0.826

0.747

1.00

1.00

0.999

0.997

0.993

0.986

0.975

The problem of evaluating the hyperellipsoid, however, remains very difficult since it

cannot be visualized. The equation for the ellipsoid can be transformed to its principal

axes by means of the eigenvector transformation. The resulting diagonal matrix of eigen-

values yields the maximum excursions of the state variables. However, these excursions

are in the transformed (principal) axes and therefore are maximum excursions for combi-

nations of Ax], Ax2, ..., Ax6 and are still difficult to visualize.

8.5.3 HYPERRECTANGLE PROBABILITIES

Another method of interpreting the confidence regions of state variable uncertainty is by

means of hyperrectangles instead of hyperellipses. Consider a two-dimensional case

where Pax is the covariance matrix

= F °_ax_ °'Ax_ax 1 (8-149)Pax LOax,ax 
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The quadratic form _'Tp--/_ _ --.- t2 is

O2ax2Ax] - 2a_,_ 2 Ax, Ax2 + O_ax, Ax_ = g2 IP_xl (8-150)

This quadratic equation represents an ellipse such as that shown in Figure 8-3.

Figure 8-3. Error Ellipse and Rectangle

The width Ax_ and height Ax2 of the rectangle enclosing the ellipse are determined from

Equation (8-150) for the condition that dAx2/dAxl = 0 and dAxl/dAx2 = 0, respec-

tively, yielding

Ax_ = g a_ 2 (8-151a)

Ax_ = t aax, (8-151b)

Thus, the probability that Axl lies within the region - 3cra_, < Axl < 3aaxl is 0.997,

Ax2 falling wherever it may. The probability that Ax2 lies within the region

-3aax2 -< Ax2 - 3aax2 is also 0.997, Axl falling wherever it may. Assuming no sig-

nificant correlations, the probability that Axl and Ax2 simultaneously lie within the re-

spective regions -3aaxl < AXl < 3traxl and -3tTAx2 < AX2 _ 30"Ax2 is therefore

(0.997) 2 or 0.994. The probability that Axl and Ax2 lie within the 3(7 ellipse is 0.989,

slightly less than that for the rectangle due to the lesser area.
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Extending this interpretation to six dimensions, the probability that Axl, Ax2, ..., Ax6

simultaneously lie within their 3tr hyperrectangles is (0.997) 6 or 0.982. The probability

that they lie within the six-dimensional hyperellipsoid is 0.826, significantly lower because

of the smaller volume. The hyperrectangle probabilities corresponding to t = 1, 2, 3, and

4 and m = 1 through 7 are presented in Table 8-2.

Table 8-2. Hyperrectangle Probabilities

1 0.683

2 0.466

3 0.319

4 0.218

5 0.149

6 0.102

7 0.069

1 42 3

0.955 0.997

0.912 0.994

0.872 0.991

0.832 0.988

0.794 0.985

0.759 0.982

0.724 0.979

1.00

1.00

1.00

1.00

1.00

1.00

1.00

The hyperrectangle probabilities are much easier to analyze since the various sides of the

hyperrectangles are multiples of the square root of the variances. However, it is important

to be aware of the fact that the boundary of the hyperrectangle merely encloses a volume

of space and in no way can be regarded as a boundary of constant probability as is the

case with hyperellipses.

The hyperrectangle probabilities are particularly convenient during program checkout. By

processing simulated data having Gaussian random error with zero mean and known

variances, the residuals of the estimated vector can be compared with the calculated

standard deviations. The distribution of residuals should satisfy the lo, 2o, 30, and 4or

probabilities in Table 8-2.

8.5.4 CORRELATION COEFFICIENT

It has been shown that the off-diagonal covariance elements of a covariance matrix deter-

mine the deviation between the random vector coordinate axes and the principal axes of

the hyperellipse of constant probability. When the covariance elements are zero, the prin-

cipal axes are aligned with the coordinate axes and the components are independent of

each other. Furthermore, the normal density function (Equation (8-140)) can then be

factored into a product of n univariate functions of Axx, Ax2, ..., Axn.
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Another measure of the dependence of two random vectors Ax and Az having a
(p x q)correlation matrix

CAxAz --

m

COV(AXl, AZl) COV(AXl, AZ2) " " " Cov(Axl, AZq)

cov(Ax2,Azl)

cov(Axp, AZl) cov(Axp, Az2) • • • cov(AXp, AZq)

(8-152)

is the correlation coefficient, defined as

cov(Axi, Azj)

Qij = p(Axi, Azj) = v/var(Axi) var(Azj)
(8-153)

The variance elements are the squares of the standard deviations for AX i and Azj, respec-

tively, and lie along the main diagonal of Pax and Paz, respectively. The correlation

coefficient satisfies the following conditions:

O = 0 if and only if Axi and Azj (and therefore xi and zj) are uncorrelated

Iol 1
Q = + 1, if and only if

Axi_ = + _'Azj_ (8-154)

traxjj I, tr_jj

where crax I , traz I are the standard deviations of the errors xi and zj, respectively.

8.6 ESTIMATION-RELATED TECHNIQUES

Specific techniques required in the estimation process include matrix inversion, editing of

residuals, iteration control, residual statistics, and hypothesis tests. These are discussed in

the following subsections.
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8.6.1 MATRIX INVERSION

The normal matrix is inverted by recursively inverting smaller matrices and by the use of

the Schur identity. The symmetrical properties of the normal matrix are utilized during

the inversion process. The Schur identity method is developed by assuming that the ma-
trix to be inverted is of the form

[M] =I [Mll]
[M21]

[M12] 1
- [M=]

with the inverse given by

[H1,] I [H,2]_I

I[M]-' = r
[H2,I 'l [H22]

(8-156)

Since

[MI [M] -1 E io,,,,o j,
] ] [i

(8-157)

then

[Mll] [Hll] + [M,2] [H21] = [I] (8-158a)

[M21] [Hll] - [M221 [H21] = [ 0 ] (8-158b)

Eliminating [H21 ] from Equations (8-158) and solving for [Hll] gives

[Mll] [Hll] + [M12] [M22] -1 [M21] [Hll] = [I] (8-159a)
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Or

[Hn] = [Mll] -1 - [Mn] -1 [M12] [M22] -1 {[M21] [Hn]} (8-159b)

Premultiplying Equation (8-159) by [M21] [Mll] -1 gives

[M211 [Hn] + [M211 [M111-1 [M12] [M221-1 [M211 [H11] = [M21] [Mn] -1 (8-160a)

or

[M21] [Hll ] I[I] + [M21] [Mll]-I [M12] [M22]-1]-1
= [M2,] [M,,]-' (8-160b)

Substituting Equation (8-160b) into Equation (8-159b) gives

[Hll1 = [M,1] -1 - [Mll1-1 [M121 [M221-1

x [[I1 + [M21] [M,,] -1 [M,2] [M221-1] -1
[M21] [Mill -1

(8-161)

The matrices [H22], [H12], and [H21] can be derived in a similar manner, yielding

[ ]-'[H221 = - [M2,] [M,1] -1 [M_2I + [M22] (8-162a)

[H12] = - [Mn] -1 [M12] [H22] (8-162b)

[H21] = [M22] -1 [M21] [Hll] (8-162c)

It is assumed that the inverse of [Mll] is known and that [M22] is in all cases a (1 x 1)

matrix. The matrix inversions required in Equations (8-161) and (8-162) are simply the
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reciprocals of the elements of the respective matrices. The inversion begins by setting

[M11] as

1
[M11] -1 = (8-163)

mll

and

1
[M22] -1 = (8-164)

m22

Equations (8-161) and (8-162) are then employed to determine the inverse of

ll m12 1

21 m22[

(8-165)

The result is called [Mll] and the diagonal element following (in this case m33) is used

to form a new [M22]. The process is continued along the diagonal until the required

matrix is inverted. GTDS takes full advantage of the symmetry of the normal matrix by

computing and storing only the upper triangle of the matrix. The inversion process is

designed to invert a matrix in upper triangular form and store the result in the same

manner.

8.6.2 EDITING OF MEASUREMENT RESIDUALS

The measurement residual, as computed by GTDS, is defined as the actual measurement

minus the computed measurement that is based on the trajectory specified by the current

state vector solution. Deletion of a measurement from the differential correction or filter

computation can be accomplished by one or more of the following tests that are made on

each iteration or filter set for each measurement:

• By Time. The measurement is rejected if it falls outside a specified timespan.

• By Type. The measurement type is among those to be rejected.

By Station. The identifier of the station making the measurement is among

those to be rejected.
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By n th Measurement. Every n th measurement of this type is to be processed;

all other measurements are rejected.

By Deviation. The measurement is rejected when the deviation from the orbit

established by the previous iteration is greater than a specified value, or, in a

filter run, when the residual differs from the predicted measurement residual,

by more than a specified amount. The residual editing algorithms used in the

Differential Correction Program are discussed in Sections 8.6.2.1 and 8.6.2.2.

By Geometry. The measurement is rejected when the elevation angle of the line

of sight from the tracking station is below a specified minimum value.

If a residual is deleted by any test, then the row of the augmented matrix F (the matrix of

partial derivatives of the measurements with respect to the estimated parameters) corre-

sponding to the measurement is not computed.

Preliminary measurement editing and the iterated residual editing procedure in GTDS are

described below.

8.6.2.1 Preliminary Residual Editing

For the first outer loop iteration, the measurement fails the preliminary residual editing

test if

I Ay(t ) I > R (8-166)

where

Ay(tj)

R

= measurement residual for the i th measurement

-- maximum residual multiplier (this is a constant, with a default value

of 10)

= component of the measurement weight matrix W corresponding to

the jth measurement

For subsequent outer loop iterations, the measurement is edited if

IAy(tj) I > k RMSPi-1 + K (8-167)
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- where

k

K

RMSPi-1

= constantmultiplier (default = 3)

= additive constant (default-- 0)

= predicted root-mean-square (determined at the end of the previous
least-squares iteration) for the current iteration (see Section 8.6.3)

The subscript i indexes the outer loop least-squares iterations.

8.6.2.2 Iterated Residual Editing Procedure

A
After the state estimate, x i , is computed in each outer loop iteration, it can be refined

using the iterated residual editing procedure. The three major steps followed in this proce-

dure are as follows:

1. For each measurement, the predicted weighted measurement residual, Ay°(tj),

is computed by keeping only the linear term in the Taylor series expansion, as follows:

^ (8-168)
Ay'(tj) = _ Ay(tj) - _] AXi+l,n-1

where

w_

Ay(tj)

A_i+l,n

= component of the measurement weighting matrix corresponding to

jth the measurement

= jth measurement residual computed in the outer loop

= jth row of the matrix F computed in the preliminary outer loop
(defined in Equation (8-42))

= state correction computed in the n th residual editing iteration,
^

Axi+l,0, equals the correction computed in the i th outer loop,
AXi+l, given in Equation (8-23)

Next, an n-sigma editing test is applied by using the previous predicted root-mean-square

(RMSP) to edit the predicted residual. The first residual editing iteration is initialized with

RMSP0 = RMSP from Equation (8-185). (Note that the root-mean-square (RMS) and the

RMSP of the measurement residuals are defined further in Section 8.6.3.) If the predicted

residual exceeds the tolerance

IAy'(tj) I > RMSPn-a (8-169)
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where kk is a multiplier that may or may not be the same as the quantity defined for
preliminary residual editing), then the contribution of the measurementis removed from
the normal equations. This is done by first eliminating the contribution of the measure-
ment from Equation (8-23), as follows:

Ni,n *= Ni,n - ffjTwii _] (8-170)

Si,n *= St,n - ffjTWjj Ay(tj) (8-171)

where

N,,o= F?WF, + (8-172)

Si,o = Fir W Ay_ + P-2xo Axi (8-173)

Then the measurement residual Ay(tj) is removed from the vector of measurement re-

siduals, i.e.,

Ayi,n *= A_i,n - [Ay(tj)element] (8-174)

where

A_i,o = Ayi (8-175)

Next, the total number of measurements is reduced by one, i.e.,

mi,n _= mt,n - 1 (8-176)

where

mi,o = mi (8-177)

This process is repeated until all the measurement data are examined.
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A
2. The state correction vector, Axi÷l,n; the estimation state vector,

the RMS and RMSP are recalculated as follows:

A
xi+_,n ; and

^ (8-178)Axi_l,_ -- Ng._ Si,_

^ ^ A _i+1 (8-179)
Xi+I, n -- Xi+l,n-1 + ,n

RMS_ = 1 (Ay LwA_,n + Ax L P-& Ax,,o)]
(8-180)

where

^ (8-181)
AXi,n = X--O- Xi+l,n-I

and

RMSP_ = {RMS2_ - 2A_T--_mi,_Si'n'ltl/2J
(8-182)

The quantities Ni,n and Si,n are given in Equations (8-170) and (8-171), respectively, and

A_,n includes only those residuals that survived the residual editing. (Inclusion of the

term in RMSn that includes the a priori covariance is optional.)

3. Tests for convergence (or termination) of the inner loop residual editor are then

performed. The process is terminated if any of the following criteria are satisfied:

a. The difference between the state update produced by the current recursive

iteration and that produced by the preceding iteration is less than a

specified tolerance.

b. The maximum allowable number of recursive iterations (default = 10) has

been reached.

c. The relative difference of two successive values for RMSP is within a

specified tolerance, i.e.,

[ RMSPn_I - RMSPn I (8-183) vlgP <
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where

RMSPn_I = predicted RMS for the (n- 1) th residual editing loop

RMSPn = predicted RMS for the n 'h residual editing loop

e -- specified tolerance

The final values obtained in Equations (8-178) through (8-182), by definition, are the

A l,l, x̂l÷l, RMS, and RMSP, respectively, of the entire outer loop, replacing those

given in Equations (8-23), (8-24), (8-184), and (8-185). The final RMSP can also be used

in the preliminary editing test for the next outer loop iteration.

8.6.3 ITERATION CONTROL FOR THE DIFFERENTIAL CORRECTION

PROGRAM

Conditions that can cause termination of the differential correction process are as follows:

• Convergence of the solution

• Maximum number of consecutive iterations reached

• Maximum number of iterations reached

The convergence criteria in GTDS are based on iterative reduction of the square root of

the mean square of the measurement residuals. This quantity, denoted by RMS, is calcu-
lated as follows on the i th iteration:

ml__ _ 31/2RMS -- (_i TW _i "t" Ax? P_AIAxo AXi) 1 (8"1841

where _i and Axi are defined in Equations (8-21) and (8-22), and m is the number of

measurements. If the value of RMS decreases during two consecutive iterations, the solu-

tion is converging. After a prespecified number of consecutive divergent iterations, the

problem is terminated. After testing for convergence or divergence, a predicted RMS is
calculated through first order in Axi, l for the next iteration as follows:

RMSP =
(___ [ A T A

(_i - Fi AXi+l) W (_t - Fi aXi÷l)

^ ^ ]},/2+ (a×,,l- t?xi)rP- , (Axe,,- t?x0

(8-185)
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A

where Axi+l, Axi, and Ft are defined in Equations (8-23), (8-24), and (8-19a), respec-

tively. The second term on the right is exactly correct for the (i + 1) st iteration. The first

term on the right linearly corrects the measurement residuals to account for the iteration.

The first term on the right linearly corrects the measurement residuals to account for the

differential correction Axi+l • If the regression equation (Equation (8-14)) were linear, the

predicted RMS (RMSP) would be exactly correct. The iterations are considered converged

and the problem terminated when the following criterion is met:

I RMSB - RMSP [ (8-186)
< E

RMSB

where

RMSB -- smallest RMS achieved compared with all previous iterations

-- improvement ratio criterion specified by input

8.6.4 WEIGHTED LEAST-SQUARES AND FILTER STATISTICS

Upon completion of each iteration of the weighted least-squares fit or after a specified set

of measurements has been filtered, a summary of the measurement residual statistics is

calculated and printed. The statistical quantities that comprise the summary are computed

for data types and residual groups that contain data from specific tracking stations. The

following abbreviations are used in the statistical relationships:

where

A--yj = jth residual, yj- f[_i(tj),Zo]

ns = total number of residuals for a station and data type (group)

The measurement residual statistics are defined below.

Root Mean Square Error

The total weighted RMS, the predicted total RMSP, and the RMS for each station and data

type are calculated from Equations (8-184) and (8-185). It is normally desirable that RMS

be small, preferably zero.
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The mean value of each residual group is a measure of the bias in the measurement and
is calculated as follows:

ll|

ns _JJ
J=l

(8-187)

It is desirable that _ for each group be zero to be consistent with the assumption in
Equation (8-25a) that the measurement noise has zero mean.

Sum of Sauares About the Mean

The sum of the squares of the residuals about the mean of each residual group is

S

n$

j=l

(8-188)

Samnle Standard Deviation

The sample standard deviation of each residual group is a measure of the dispersion of

the measurement data and is calculated as follows;

In 71/21 E (_-_j - 1)1/2°: .,-1 I :(n. (8-189)

In GTDS, the approximation is made that ns is large. Hence, ns - 1 is replaced by n, in

the denominator of Equation (8-189). The standard deviation should be consistent with

the values used in the priori weighting matrix, W.

Confidence Interval for the Group Mean

If the measurement residual group population is normally distributed with zero mean,
then the variable

m
t

_2/n, (8-190)

has a t-distribution (Student's) with (n_ - 1) degrees of freedom. Therefore, confidence

intervals for the mean can be constructed from tables of the t-distribution. As ns becomes

large, the t-distribution approaches the normal distribution.

_j,
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Measurement Residual Groups

For each iteration of the weighted least-squares fit, or after a specified set of measure-

ments has been filtered, the following data are printed for each residual group:

Number of measurements, ns

Number of rejected and accepted measurements

Histograms of the measurements by the true anomaly

8.7 STATISTICAL OUTPUT REPORT MODELING

The Statistical Output Report (SOR) is designed for validating the tracking data and for

calibrating trackers. The SOR groups the measurement residuals computed during the

differential correction process in a number of different ways and computes the mean and

standard deviation of each group of residuals. The basic groupings used in the SOR con-

sist of SOR categories and SOR batches. Mean and standard deviation values based on

SOR categories form the validation statistics, while the values based on SOR batches form

the calibration statistics. Statistics for the first differential correction iteration residuals,

the last differential correction iteration residuals, or both can be computed.

The SOR batches and categories are discussed in Section 8.7.1. Section 8.7.2 describes

the SOR validation statistics, and the SOR calibration statistics are defined in Sec-

tion 8.7.3. A noise estimate, based on the calibration statistics, is also computed in the

SOR; this is discussed in Section 8.7.4.

8.7.1 SOR BATCHES AND CATEGORIES

An SOR batch corresponds roughly to the set of all measurements and residuals obtained

from a particular tracking station during one tracking pass. The criteria used to form an

SOR batch are the following:

• Tracking station

• Time difference between measurements

• Timespan of the batch
• Number of measurements in the batch

• Equipment mode (Reference 17, Table 4-3) (depending on the tracker type)

• Data rate (Reference 17, Table 4-4) (depending on the tracker type)

• Vehicle identification code (depending on the tracker type)

• Object number (depending on the tracker type)

• Range ambiguity (depending on the tracker type)
• Multifunction receiver number (depending on the tracker type)

• Frequency band (can be overridden) (TDRSS data only)
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• Carrier frequency identification (can be overridden) (TDRSS data only)

• User bit rate (can be overridden) (TDRSS data only)

• Multiple-access antenna identification (TDRSS data only)

• Forward-link TDRS identification (TDRSS data only)

• Return-link TDRS identification (TDRSS data only)

• Ground transponder identification (TDRSS data only)

The mean and standard deviation statistics are computed separately for each measure-

ment type within the batch.

An SOR category corresponds roughly to the set of all batches obtained from stations

using the same tracker type. The criteria used to form an SOR category are the following:

Measurement type (Reference 17, Table 4-2)

Tracker type (Reference 17, Table 4-1)

Equipment mode (depending on the tracker type)

Data rate (depending on the tracker type)

Frequency band (TDRSS data only)

8.7.2 SOR VALIDATION STATISTICS

The SOR validation mean and standard deviation statistics are based on SOR categories.

The SOR category validation statistics are described in Section 8.7.2.1. Validation statis-

tics are also computed for each batch and for each station, using some of the results from

the category validation statistics. Section 8.7.2.2 defines the batch validation statistics,

and the station validation statistics are given in Section 8.7.2.3.

8.7.2.1 Category Validation Statistics

The following three types of data are included in the category validation statistics:

• Data that are accepted by the differential correction process

• Data that are residually edited in the differential correction process

• Data that are edited by user-supplied specifications (preedited; see Sec-

tion 8.6.2)

The data residuals in each category are first subjected to a maximum O-C residual test, in

which each residual that exceeds a specified value is marked as "SOR O-C max" edited.
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The mean, Mo, and variance, So_, of the remaining unedited residuals are then computed

as

no

_-'_ Ay(tj)

Mo = 1--1 (8-191)
no

and

no

_-'_ [Ay(tj)]2

j=l

no

- M_ (8-192)

where

Ay(tj) = jth unedited residual

no = number of remaining unedited residuals

The remaining unedited residuals in each category are then subjected to an iterative

n-sigma edit, i.e., they are edited if

IAy(tj)-MR-11 > riSk-1 (8-193)

where

Mk-1

n

Sk-I

k

= mean of the unedited residuals from the previous edit loop

= sigma multiplier

= standard deviation of the unedited residuals from the previous edit

loop

= edit loop counter
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The mean, Mk, and variance, S2, of the residuals that are unedited on successive edit

loops are computed using Equations (8-191) and (8-192), with nk rather than no, where

nk is the number of unedited residuals on the kth edit loop.

If the maximum number of iterative edit loops has not been reached and no additional

residuals are edited, the iterative n-sigma edit is terminated. All residuals edited during

the iterative n-sigma loop are marked as "SOR validation edited." The mean values and

standard deviations of the final sets of unedited and edited residuals are computed sepa-
rately as described above.

8.7.2.2 Batch Validation Statistics

For the batch validation statistics, no O-C maximum or n-sigma editing is performed.

Instead, the final edit status from the category validation statistics is used in determining

the edit status of the residuals in the batch. The mean values and standard deviations of

both the validation-edited and the unedited residuals are computed separately for each

batch. The batch and category validation statistics are the same only if the data from each

category are obtained from exactly one batch.

8.7.2.3 Station Validation Statistics

Each SOR category is also partitioned into one or more groups, based on the tracking

station. The mean values and standard deviations of the unedited and validation-edited

residuals are computed for each station included in each category. The station and cate-

gory validation statistics are identical if the category contains data obtained from only one
station.

8.7.3 SOR CALIBRATION STATISTICS

The SOR mean and standard deviation calibration statistics are based on SOR batches

and are described in Section 8.7.3.1. Ground transponder calibration statistics, based on

the batch calibration statistics, are also computed and are described in Section 8.7.3.2.

8.7.3.1 Batch Calibration Statistics

The following types of data are included in the batch calibration statistics:

• Data that are accepted in the differential correction process

• Data that are edited in the differential correction process

• Data that are edited by user-supplied specification (preedited)
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The validation edit status of the data is ignored. The data residuals in eachbatch are first
subjectedto a maximum O-C test in which each residual that exceedsa specified value is
marked as calibration edited. The mean and standard deviation of the remaining unedited
residuals are then computed as in the validation statistics.

Next, residuals in each batch are subjected to an iterative n-sigma calibration edit, as in
the category validation statistics, and the mean and standard deviation valuesof the final
sets of unedited and calibration-edited residuals are computed.

Although the maximum O-C value, the number of iterative loops, and the sigma multi-
plier are the same for both the categoryvalidation and batch calibration editing, the batch
validation and batch calibration statistics are not the same. These statistics will only be
the same if each category contains data from only one batch.

An additional validity indicator is computed wheneverbatch calibration statistics are com-
puted. The indicator is set when the number of edited points from the batch validation
statistics is not equal to the number of edited points from the batch calibration statistics
and when

[M_ - M_] > 3 (S_ + S_) (8-194)

"_ where

Mu = final unedited batch validation residual mean

Me = final edited batch validation residual mean

Su = final unedited batch validation residual standard deviation

Se = final edited batch validation residual standard deviation

8.7.3.2 Ground Transponder Calibration Statistics

Additional calibration statistics are computed for TDRSS ground transponder tracking

data. The batch calibration statistics for two-way and hybrid range data taken from each

ground transponder user are used to compute the additional statistics, as follows:

rib

Mci

MM - i= 1 (8-195)
rib
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nb

-_Sc_

Ms = t--1 (8-196)
nb

nb

= l=, (8-197)
nb

nb

Z

82 = i=l - ME (8-198)
nb

where

Mc i

Sc_

MM

SM

Ms

Ss

nb

= final unedited batch calibration residual mean from the i m batch

= final unedited batch calibration standard deviation from the i lh batch

= mean of the unedited batch calibration residual mean values

= standard deviation of the unedited batch calibration residual mean
values

= mean of the unedited batch calibration residual standard deviations

= standard deviation of the unedited batch calibration residual standard
deviations

= number of batches of either two-way or hybrid range data for each
ground transponder user

8.7.4 BATCH CALIBRATION NOISE STATISTICS

A noise estimate for the residuals in the batch is computed whenever batch calibration

statistics are computed. Both the Variate Difference Noise Analysis (VDNA) and Divided

Difference Noise Analysis (DDNA) techniques are used (Reference 18). Data that are
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unedited in the calibration statistics or n-sigma edited in the calibration statistics are
included in the noise estimate.Due to the manner in which raw nondestruct Doppler and

range-rate measurements are constructed during preprocessing, these types of data are

treated somewhat differently than other types of data when the noise analysis techniques

are applied (Reference 19).

8.7.4.1 VDNA Noise Estimation

The VDNA technique requires that the data be evenly spaced, which might not occur in

practice because of frame dropout or the presence of invalid data. Thus, the most fre-

quently occurring time-tag difference in the batch is computed, and those residuals that
fall at other times are marked as data-gap edited and are not included in the VDNA noise

estimate. The pth-order VDNA noise estimate, trp,, is computed as follows:

A°Vi = Ay(ti) (i = 1, 2, ..., N) (8-199)

APvi = AP-1vi+I _ AP-1vi [i = 1, 2, ..., (N - P)] (P > 0) (8-200)

N-P

E (APVi)

= (8-201)
fq (N - P)

where

Ay(ti)

A_qi

N

P

q

--- ith unedited residual

= ith variate difference of order P

-- number of unedited residuals available for noise estimation

= order of the variate differences

= (P + 1) for nondestruct Doppler and range-rate data for which the

majority (more than 50 percent) of the Doppler count intervals are
equal to the most frequently occurring time-tag difference; for this

case, the resultant _v is also multiplied by two

= P for all other cases
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and

2q I (2q)_fq= = _[q!
(8-202)

For nondestruct range-rate data, the Doppler counter VDNA noise estimate, NCNTR, is

computed as

NCNTR -- M DCI (8-203)

where

DCI

FR = receive frequency (hertz)

c = vacuum speed of light (meters per second)

M = 1000 (if FR < 3000 megahertz)

= 100 (if FR ___ 3000 megahertz)

N- = averaged range-rate VDNA noise estimate (computed as in
R Equation (8-201))

= Doppler count interval (seconds) (average Doppler count
interval if it is not constant throughout the batch)

For nondestruct Doppler data, the Doppler counter VDNA noise estimate, NCNTR , is

computed as

NCNTR = M N(___) (8-204)

where NI_ is the averaged Doppler VDNA noise estimate (computed as in Equa-

tion (8-201)).
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8.7.4.2 DDNA Noise Estimation

The DDNA noise estimate, Opv, is computed as follows:

6°V_ = Yi (i = 1, 2, ..., N) (8-205)

6Pvi = 6P-1Vi+l _ 6P-1vi
ta+p - h

[i = 1, 2, ..., (N - P)] (P > 0) (8-206)

P+I

kV[ (ti÷j+l - ti+k-1)=1
k_ j

(8-207)

where

N - P ((_PVi) 2

4°-- (w y
i=l j=l

(8-2o8)

ti

6PV_

-- time tag associated with Vi (seconds)

= weighting factor for the Pth-order divided differences

= ith divided difference of order P

For nondestruct range-rate or Doppler data, the DDNA noise estimate is computed only if

the Doppler count interval associated with each data point is equal to the corresponding

time-tag difference. In this case, the number of residuals (data points) available for noise

estimation is incremented by one (i.e., N is set to N + 1), and the formation of the

first-order (P -- 1) averaged differences is bypassed.

For nondestruct range-rate data, the Doppler counter DDNA noise estimate, NCNTR, is

computed as

s

NCNTR = M --2FR NR (8-209)
C
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where Nk is the intermediate range-rateDDNA noise estimate (computed as in Equa-
tion (8-208)).

For nondestruct Doppler data, the Doppler counter DDNA noise estimate, NCNTR, is

computed as

t

NCNTR = M N D (8-210)

where ND is the Doppler DDNA noise estimate (computed as in Equation (8-208)).

8.7.4.3 Noise Analysis Editing and Convergence

Prior to formation of the noise estimate, the individual variate or divided differences are

subjected to an iterative n-sigma edit. The edit criteria are basically variances to be tested

directly against the squares of the differences. These criteria are as described below.

VDNA

1. Initial loop of the initial order:

a. Unsampled range-rate and Doppler data

(3 m)2 (S_ + M_) (-_) (8-211)

_j

b. General

(3 m)2 (S_ + M2) fq (8-212)

. Initial loop of other orders:

a. Unsampled range-rate and Doppler data

(3 m)2 o.2_1 (_) (8-213)

b. General

3m) _-1 fq (8-214)
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3. Other than the initial loop, all orders:

m2 c___ fq (8-215)

DDNA

1. Initial loop of the initial order:

(3 m)2(S_ + M_)
(8-216)

2. Initial loop of other orders:

3m) @-1 (8-217)

3. Other than the initial loop, all orders:

m2 4-1 (8-218)

In all of the above equations, the following symbol definitions are made:

-1

SC

Mc = final unedited batch calibration mean value

= sigma multiplier for the noise analysis "m-sigma" edit

= final variance for the Pth-order noise estimate computed as in

Equation (8-201) (VDNA) or as in Equation (8-208) (DDNA)

= variance estimate for unedited differences on the (E-1) st edit loop of

the same order

final unedited batch calibration standard deviation

Each squared difference that exceeds the applicable edit criterion is marked as edited and

is not included in either the variance estimate for that edit loop or the noise estimate for

that order. All differences of a particular order are considered unedited prior to the initial

edit loop of the order, regardless of the edit status of the differences from the previous

order. If the maximum number of edit loops has not been reached and no additional

editing has been performed, the iterative edit "m-sigma" loop is terminated.
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The noise estimate itself is consideredconverged at the order level if either

(1)

trp-2 (1- C) < crp_1 < crp_2 (1 + C) (8-219a)

and

Up-1 (1- C) < O'p _ Crp_1 (1 + C) (8-219b)

or

(2)

Up-2(1- C) -< O'p _< O'p-2(1 + C) (8-220)

where

O"i =

C

ith-order final noise estimate, computed as in Equation (8-201) (VDNA)
or as in Equation (8-208) (DDNA)

noise estimation convergence criterion (default: C = 0.1)

For nondestruct Doppler or range-rate data, the intermediate noise estimates for Equa-

tions (8-201) and (8-208) are used to test for convergence, rather than the Doppler
counter noise estimates.
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CHAFI'ER 9--LAUNCH AND EARLY ORBIT METHODS

The estimator algorithm in GTDS requires an a priori estimate of the spacecraft position

and velocity to initiate the iterative estimation process (see Chapter 8). GTDS is part of

the Trajectory Computation and Orbital Products System (TCOPS) in the GSFC Flight

Dynamics Facility (FDF). The TCOPS launch processor provides the capability to propa-

gate an insertion vector through successive bums to obtain an initial on-orbit vector. How-

ever, an accurate estimate is frequently unavailable because of large booster injection

errors, maneuver errors, or unknown orbits of tracked satellites. Therefore, GTDS pro-

vides the capability to determine a starting value of the position and velocity from a

limited number of discrete tracking data samples.

Three techniques are optionally provided to perform this function. They are as follows:

• Gauss Method and Double R-Iteration Method. These deterministic methods

use three sets of chronologically ordered gimbal angle measurement pairs to

solve for the six Cartesian position and velocity components at an epoch time

equal to that of the second measurement. The gimbal angle measurement sets

need not be from the same tracking station. The central angle (from the Earth's

center) subtended by the three sets of angles should be less than 60 degrees for

the Gauss Method and less than 360 degrees for the Double R Method. Either

X and Y or A and E gimbal angle data from the GRARR, ATSR, USB, or

C-band systems; t and m direction cosines from the Minitrack System; or geo-

centric right ascension, a, and declination, 6, measurements can be used.

• Range and Angles Method. This method uses multiple (more than two) sets of

simultaneously measured range and gimbal angle data from the GRARR,

ATSR, USB, or C-band radar systems. Two-body equations are regressively

fitted to the transformed data to yield epoch values of the spacecraft position

and velocity.

For TDRS tracking, a separate method based on homotopy continuation techniques is

used. This method, which is part of the Preliminary Orbit Determination System (PODS)

of TCOPS is documented in Reference 1.

This chapter discusses the powered flight propagation techniques available in the TCOPS

launch processor and the early orbit methods available in GTDS.

9.1 LAUNCH AND POWERED FLIGHT PROPAGATION
TECHNIQUES

During launch support of an expendable launch vehicle, a vector is selected following the

first main engine cutoff (MECO-1) of the launch vehicle and is designated the insertion
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vector. This vector is propagated through the following burns of the main engine and the

second stage bums to provide the orbit trajectory. Exactly how many burns of the main

engine and the second stage depends on the specific vehicle and the mission design. The

trajectory from the time of liftoff (main engine ignition) to MECO-1 is provided to TCOPS

from outside sources. During the launch, telemetry data from the launch vehicle contain

accelerometer data, which are integrated at the launch support site to provide either the

thrust components of the spacecraft position and velocity that are used in launch support

processing or the position and velocity vectors provided directly as Launch Telemetry
Acquisition System (LTAS) vectors.

The propagation of an insertion vector through successive burns when the thrust compo-

nents are provided requires the following:

"¢.

The capability to predict the thrust before the events and the inclusion of this

predicted thrust in the force model used to propagate an insertion vector to

provide a predicted trajectory. (This capability is available in GTDS and is

discussed in Section 4.8.4 of this document.)

The capability to include thrust information extracted from launch telemetry

data in the propagation as the launch telemetry data are received. (This capa-

bility is available in the TCOPS launch processor.)

The mathematics for propagation through powered flight using the telemetry data re-
ceived during launch is presented below.

The following items are given:

(r0, %)

m

A

TLO

ag

_'j

-- position and velocity vectors at the initial time, to (insertion vector)

-- mass of the satellite/launch vehicle combination at ignition (or at
the last burnout)

= cross-sectional area of the launch vehicle

= time of liftoff (UTC)

-- Greenwich hour angle at TLO

--- longitude of the launch pad

= ground elapsed time from TLO for the selected Delta Inertial Guid-
ance System (DIGS) station
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M

= thrust componentsin terms of position and velocity changes,re-

spectively, in a geocentric body-fixed coordinate system referenced

to the launch pad at time tj, extracted from the launch telemetry
data

= transformation matrix from the geocentric body-fixed coordinate

system to the true of date system

where

M

g
m

cos (ag + 2) - sin (a s + 2) 0

sin (a 8 + 2) cos (a s + 2) 0

0 0 1
m

(9-1)

The position and velocity at time tj are computed as follows:

= _ + A_ (9-2)

_] = _ + A_ (9-3)

where

tj = yj + TLO (9-4)

The quantities _ and Vj are the result of integrating from q-i to tj considering the

effects of forces on the spacecraft other than thrust. The integration to produce (_, _) is

done with a low-order Runge-Kutta integrator, described in Section 6.2.2. The initial con-

ditions are (_-1, _-a), the position and velocity vectors computed at the previous step,

including thrust effects.

The quantities A_ and AVj, which are the changes in the position and velocity from q-1

to tj due to thrust, are computed by rotating (6_], 5V]) from the geocentric body-fixed

coordinate system to the true of date system as

A_ = M 6_ (9-5a)
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A_ = M(5_ (9-5b)

and computing the following differences:

AV_I = iV 1 (9-6a)

Ar'l = Arl (9-6b)

= - A5_1 0 > 1) (9-7a)

(j > 1) (9-7b)

If there are no thrust data at tj, then A M and A_ equal zero.

When LTAS vectors are used, the only processing necessary is the conversion from the

geocentric body-fixed coordinate system to the true of date inertial system, using the

matrix M given in Equation (9-1).

9.2 ANGLES-ONLY METHODS

Both the Gauss Method and the Double R-Iteration Method use three sets of chronologi-

cally ordered gimbal angle measurements from up to three separate tracking stations to

determine the Cartesian components of position and velocity. The angle data set can be

distributed over an orbital arc of less than 60 degrees in mean anomaly for the Gauss

Method and up to 360 degrees in mean anomaly for the Double R-Iteration Method. The

epoch for the position and velocity corresponds to the time of the second measurement

set. The methods are deterministic since the six measurement components yield the six

position and velocity components. Additional descriptions of these methods are presented
in Reference 2.
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9.2.1 TRANSFORMATION OF TOPOCENTRIC GIMBAL ANGLES TO INERTIAL

COORDINATES

All gimbal angles are initially transformed to topocentric station-centered azimuth, A, and

elevation, E. The X3o and Y30 angles corresponding to the GRARR and USB 30-foot

antennas are transformed by

sin E = cos X3o cos Y3o 0<E< 2)
(9-8a)

cos E =_/1 - sin 2E 0<E< 2)
(9-8b)

and

sin A = sin X3o cos Y3o (0 <_ A <_ 2_r) (9-9a)
cos E

cos A = sin Y3o (0 < A < 2_r) (9-9b)
cos E

The Xs5 and Ys5 angles corresponding to the USB 85-foot antennas are transformed by

sin E = cos Ys5 cos X85 0<E< 2)
(9-10a)

cos E =_/1 - sin2E 0<E< 2)
(9-10b)

sin A-- sin Y85 (0 <- A <_ 2:rt) (9-11a)
cos E

cos A = -cosYs5 sin Xs5 (0 < A _< 270 (9-11b)
cos E
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The direction cosines, ! and m, are transformed by

cosE = _//2+m 2 (0 < E < 2) (9-12)

and

!
sin A = (0 < E _ 2_r) (9-13a)

cos E

m

cos A = (0 < E < 2_) (9-13b)
cos E - -

The C-band radar gimbal angles are directly measured as A and E, and the resulting

angle sets are denoted by (t, A, E). The altitude above the reference Earth ellipsoid, the

geodetic latitude, and the longitude of the tracking station measuring the angle set are

denoted by (hs, _bs, _,s). The unit vector directed toward the spacecraft can be written in

topocentric local tangent coordinates as follows:

A

L_t

cos E sin A

cos E cos A

sin E
B

(9-14)

The tracking station coordinates, expressed in body-fixed axes, are presented in Sec-
tion 3.3.7 as

rs b

(Ns + hs) cos _bs cos _,,

(Ns + hs) cos _s sin _,.

[N_ + h_ - (2f - f2)N_] sin Ss

(%15)
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where

Re (9-16)
N, = _/1 - (2f- f2) sin 2 0s

and

Re = Earth's equatorial radius

f -- Earth's flattening coefficient

A

Both the Lit and gsb vectors are transformed to a common inertial Cartesian axes system.

The transformations, presented in Sections 3.3.1, 3.3.2, and 3.3.7, follow. The matrix M_

from Section 3.3.7 transforms from the topocentric local tangent system to the body-fixed

system and is a function of the station's latitude and longitude, i.e.,

^ ^ (9-17)Lb = M_ Lit

"--" where

Mlt =

m
D

- sin 2, cos 2s 0

(9-18)

The matrix B T, from Section 3.3.2.3, transforms from the body-fixed system to the true

of date system and is normally a function of the Greenwich sidereal time and polar mo-

tion. Polar motion is neglected for early orbit applications (from considerations of preci-

sion). The transformation is as follows:

^

LT

m

COS _t COS at

cos tSt sin at

sin 6t
m

= BT(ag) Lb^ (9-19)
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and

r-_ = BT(a,) r-_b (9-20)

where

B T =

m m

cos a s - sin a s 0

sin ag cos a 8 0

0 0 1

(9-21)

and

at = topocentric right ascension of the spacecraft from the true-of-date equi-
nox

tSt = topocentric declination of the spacecraft from the true-of-date equator

a 8 = Greenwich sidereal time at measurement time t (see Equation (3-38))

Equations (9-17) and (9-19) can be combined resulting in a single transformation matrix

Mlt identical to that in Equation (9-18), with As replaced by (As + as), the longitude

measured from the true vernal equinox. The unit vector LT in Equation (9-19) can be

solved for the topocentric right ascension, at, and declination, tSt. Should measurements

of the topocentric right ascension and declination be available, they can be used to re-

place the topocentric gimbal angles and determine LTdirectly from Equation (9-19). The

matrix C T from Section 3.3.1.3 transforms from the true of date system to the mean of

B1950.0 or J2000.0 system and accounts for nutation and precession. The resulting trans-
formation is

A __ cT AL LT (9-22a)

Rs = C a` _s (9-22b)
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where Cx is the product of the precession transformation A(/2o, 0p, _p) and the nutation

transformation N(6e, tS_), as follows:

C T = (N A) T (9-23)

The elements of the summation matrix C T are obtained from a Solar/Lunar/Planetary

(SLP) Ephemeris File in GTDS.

Combining the preceding transformations yields

A A (9-24a)
L = (Mlt B C) T Lit

and

= (B C) T r-sb (9-24b)

Equations (9-24) present the transformations necessary when the computations are per-

formed in the mean of B1950.0 or J2000.0 system. Specifying C -- I permits the vectors to

be transformed to the true of reference date system.

In the following sections, three sets of gimbal angles, obtained at times tl, t2, and t3, are

available from either the same or different stations. Station vectors and unit vectors di-
A A A

rected towards the spacecraft, (_1, L1), (Rs2, L2), and (Rs3, L3), can be determined

from Equations (9-14) and (9-24) for each gimbal angle set.

9.2.2 GAUSS METHOD

The Gauss Method utilizes the geometric properties of the station positions and station-to-

spacecraft unit vectors, in conjunction with an approximation of the orbital dynamics, to

determine an estimate of the spacecraft's position at time t2. The orbital dynamics are

approximated by the low-order terms of the f and g series, therefore limiting the orbital

arc of the angular measurements to be within approximately 60 degrees in mean anom-

aly. Subsequently, the accuracy of the position vector is iteratively improved, and the

velocity vector is determined by the method of Gibbs. This method utilizes the approxi-

mately known position vectors at the three measurement times to determine a velocity

vector at time t2. Knowing the velocity allows one higher order term to be included in the

f and g series and thereby improves the spacecraft position determination.
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A

The geocentric inertial position vector, _, can be determined from the known vectors, Ll

and R_l, and the unknown slant range, 0i, from the station to the spacecraft as follows

(see Figure 9-1):

R'-] = _'_l + 0i Li (i = 1, 2, 3) (9-25)

The three vectors R1, 1_2, and R3 are coplanar since they all lie in the same orbit plane.

Therefore, R-2 can be written as a linear combination of R-1 and R3 as

C1R---1 + C2R2 + C3R-3 = 0 (9-26)

where

C2 = - 1 (9-27)

Substituting Equation (9-25) into Equation (9-26) yields

C101 L1 + C202 L2 + C303 L3 = - (C1R_ + C2_2 + Ca_3) (9-28)

or, in matrix form,

L C2 02[ = -Rs C2

C3 03_.J C3

(9-29)

where

I L2 Ii 1_3 (9-30a)
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-..._... SPACECRAFT

TRAJECTORY

Figure 9-1. Position Vector Geometry

and

I_ I ]1% = P-',, II 1%2 ] _3 (9-30b)
i,....

Premultiplying Equation (9-29) by L -1 yields

m _ _ m

c1 oll c1

C2 Q2[ = - D C2 (9-31)

_c3od _c,_

where

D = L -1 1% (9-32)

The preceding three scalar equations involve the five unknown variables C1, C2, 01, 02,

and Q3. Additional conditions must be imposed to determine the slant ranges, 01, 02, or

Q3. Knowing any one of these ranges, a geocentric position vector, Ra, R2, or R---3,can be

determined from Equation (9-25).
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The cross product of 1_1 and R-3 with Equation (9-26) results in the following equations:

R1 x I_2 = C31_1 x R-3 (9-33a)

_3 x R--2 = Ca R---3 x R_ (9-33b)

^

Forming a dot product between k, the unit vector normal to the orbital plane in the

direction of the angular momentum, and the expressions given in Equations (9-33) yields

A

k (_I x R2)
C3 = A (9-34a)

k x

A

k (R-2 x R-3)
C1---- a (9-34b)

k ' (RI xR3)

The position vectors can next be expressed in terms of the f and g series representation

for two-body motion (Reference 3). The series is expanded about t2, the time of the

second measurement, as follows:

R--i = fi R--2 + gi _2 (9-35)

.

where

I 1 1 i

fi -= 1 - _- u2 d - _ t_2 rta 24 ((/2 - ul) r_ - -- (if2 - 4u2 62) _l .... (9-36a)120

1 I ti2 r_ 1 (3ti2 - ul)_ .... (9-36b)
gi - rt- _-u2_ 12 - 12--0"

and

rt = ti - t2 (9-37a)

u2 = R23 (9-37b)
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where

/t = gravitational parameter for the Earth

Substituting R--'_and R--'3from Equation (9-35) into Equations (9-34) yields

C 1 =
g3

fl g3 - f3 gl
(9-38a)

C 3 =
-gl

fl g3 - f3 gl
(9-38b)

Approximating fl, f3, gl, and g3 by

fi = 1 - --1 u2r_ + O(r_) (i = 1, 2, 3)
2

(9-39a)

v

1 O(.ri4) (i 1, 2, 3)
gi = _:i- -_ u2 _ri3 + =

(9-39b)

Equations (9-38) become

C1 = al + bl u2
(9-40a)

C3 = a3 + b3 u2 (9-40b)

where

a 1 =
_3

"f3 - "fl

(9-41a)

a3 = (9-41b)
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b 1 =
_3

6(r3 - r,)
[(r_- r_)2 - _] (9-41c)

b 3 =

6(r3- "rl)
[(r_- r,)_ - _]] (9-41d)

Substituting Equations (9-40) into Equation (9-31) gives

n

(al + bl U2) Ol

- 02

(a3 + b3 u2) 03

= -D - 1 u2 '- (9-42)

a3

The preceding three scalar equations involve the four unknown variables Q1, _92, 0.3, and
U2.

Dotting Equation (9-25) with itself (for i -- 2) yields

R2 = 022 + o2Cw + R22 (9-43) .j

where

A

CW = 2 L2 _s2

is known. The second scalar equation of Equation (9-42) is

_2= d_ + d; _
R_

(9-44)

(9-45)

where

d_ = d21 al - d22 + d23 a3 (9-46a)

d2 = d21 bl + d23 b3

and the matrix D contains the elements (du).

(9-46b)
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Substituting Equation (9-45) into (9-43) gives

R_ d_+ 2 + d_+ 2
(9-47)

or

R_ - [(d_)2 + d_ C_ + R_2]R_ - /_(d_ C w + 2d; 02) R_3 - /_2(d_)2 = 0 (9-48)

Solving the preceding equation for its real positive root yields R2, which, from Equa-

tion (9-37b), determines u2. Equation (9-42) can then be solved for 01, 02, and 03;

and, finally, Equation (9-25) can be solved for R1, RE, and R--3. This sequence of compu-

tations is summarized in Figure 9-2. The resulting position vectors are only approximately

correct because of the truncation of the f and g series to obtain Equations (9-39).

The accuracy of the position can be improved and the velocity vector computed by the

method of Gibbs (Reference 2). This method utilizes the three approximately known posi-

tion vectors R1, R2, and R3 to determine the velocity, R-2. This allows an additional term

to be retained in the f and g series.

The position vectors R-I and R--3can be obtained from a Taylor series expansion about R2

as follows:

R-'i= R2+ _2 ri + _2 y + -ff
(9-49)

The vector differences (if1 - R2) and (R-3 - R2) can be obtained from Equation (9-49).

Multiplying (R1 - R2) by -_:2 and adding to (R3 - R2) multiplied by r 2 yields

-r 2 R1 + (r_- 3z_)Rz + 3_ R3 (9-50)

]_ + ...= -3132313 - rzr3 6 rlr3(r3 + rx) _zxv)24

where

_r13 = "g3 -- 31
(9-51)
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Differentiating twice gives

-_ _ + (_- _)g_ +_ _ = - 31 33 313 _:2 + 0[_2 w)] (9-52)

Multiplying (R-1 - R2) by r3 and (R-3 - R-2) by - 31, adding the results, and differentiat-

ing twice yields

33R1 - 313R2 - 31R3 =
_(2 TM)

-rl 33 313 _ + 0[R(2Iv)] (9-53)
2

Solving Equations (9-52) and (9-53) for R2 and _2 Iv) and substituting them into Equa-

tion (9-50) gives

-3_ _, + (3_- 31)_2 + 31_3

= --31 32 313 -- 33

R-2 _-3] (9-54)

+ (33- 31) 1-5 - rl ]_ J

Substituting the inverse-square law

m

•--' Ri

Ri = -,u Ri3
(i = 1, 2, 3) (9-55)

into Equation (9-54) and rearranging terms yields

R2 = -D1 R1 + D2 R_. + D3 R3 (9-56)

where

Hi
Di = Gi + -- (i = 1, 2, 3)

R?
(9-57)

with

173
H1 --

12
(9-58a)
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H3 = /a rl (9-58b)
12

H2 = H1 - H3 (9-58c)

G1 = r3 (9-59a)
_1 _13

G3 = "gl (9-59b)
"f'3 "f13

G2 = G1 - G3 (9-59c)

Knowing R'2 and _'2 from Equations (9-48) and (9-56), R 2 and its time derivative t_2 are
obtained from

and

R2 = _/R2 R--2 (9-60a)

-- ".2_

1_2 = R2 R2 (9-60b)
R2

Then Uz can be determined from Equation (9-37b), and f12 can be determined as follows:

3/t 1_2 (9-61)
f12 = R22

Knowing fi2 from the preceding equation permits one higher order term to be included in

the f and g series in Equations (9-36). An improved determination of R2 is thereby ob-

tained by iteratively solving Equations (9-36) for fi and gi (including the higher order

term); Equations (9-38) for C1 and C3; and Equation (9-31) for 01, 02, and 03. After

converged values of Q1, 02, and 03 are obtained, Equation (9-25) is solved for R2 and

Equation (9-56) is solved for _-2- The computation sequence is shown schematically in

Figure 9-2.
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9.2.3 DOUBLE R-ITERATION METHOD

The Double R-Iteration method requires an initial guess of the magnitudes R1 and R2.

This guess is obtained using the preliminary orbit search technique discussed in Sec-

tion 9.2.3.1. Then the geometric relations of the three station positions and station-to-

spacecraft unit vectors are used in conjunction with the orbital dynamics to determine the
t r

time intervals rl (between the first and second measurements) and r3 (between the third

and second measurements). A standard Newton-Raphson successive approximation

scheme is then used to correct Ra and R2 to match r'_ and (3 to the known intervals rl

and 33. These calculations are discussed in Section 9.2.3.2. The computed orbit accuracy

determination is described in Section 9.2.3.3, and initiation of the differential correction

process is described in Section 9.2.3.4.

The Double R-Iteration method can be used when the angle data are spread out over a

considerable arc in eccentric anomaly, whereas the Gauss method is unreliable and may

not converge over large arcs. Conversely, when the measurement arc is short, the Double

R-Iteration method is not as successful as the Gauss method.

9.2.3.1 Preliminary Orbit Search

During the preliminary orbit search, initial estimates of the spacecraft radius vector mag-

nitudes at the times of the first two measurements (tl and t2) are determined, subject to

the constraint that these radius magnitudes be consistent with a trajectory that does not

impact the Earth. To accomplish this, an initial estimate of the spacecraft altitude, h2, at

time t2 is needed. From this initial estimate, potential values of the spacecraft radii, Ra

and R2, at times tl and t2 are assigned using the cone-masking technique (see Appen-

dix B, Section B.1, of Reference 4 for a discussion of this technique and derivations of

the equations used). These Ra and R2 estimates are refined until a pair is found that is

likely to produce a valid final state vector. These refined values of R1 and R2 are then

used in the differential correction process, which is discussed later.

The number of such (R1, R2 ) pairs so checked is determined by the search level. Each

such level determines a specific region in the (R_, R2 ) space whose perimeter is searched

for a good trajectory to match the data.

9.2.3.1.1 Algorithmic Estimation of Upper and Lower Bounds on Spacecraft Heights

For a given search level, L, the upper and lower bounds for R1 are set, based on the

cone-masking technique using the following procedure. Given an initial height estimate,

h2, at time t2, two possible values of R2 are tried, i.e.,

R2+ = Rs2 + h2K +L (9-62a)

9-19



R2- = R_2 + h2K-L (9-62b)

where Rs_ is the magnitude of the station vector _2 and the default value of K is 1.25.

For each such value of R2, the resulting slant range, Q2, and position vector, _2, are
found from

'E ]02 = _" -C_2 + _/C_, 2- 4(P_ 2 - R_) (9-63)

and

m A

R2 = 02 L2 + }7_-s2 (9-64)

where

A

C_2 = 2I__ R-s2 (9-65)

Initial estimates for the upper and lower bounds on R1 are then assigned as

Rlm|n = Rsl (9-66a)

Rlmax = Rlup (9-66b)

where R1up is equal to 106 kilometers.

Using the following definitions,

(9-67a)

m m

- R 2 • R 2
a =

A

L1 R2

(9-67b)
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= R---2 " (R2 + F_-_1) (9-67c)
A

L1 R2

- ^ (9-67d)g= a L1-_2

= R_I + g L1- R"-2 (9-67e)

( R2 ]2
d = _- •- k_---_)

(9-67f)

the quantity A can be calculated by

a = g • _- d(_ ._ (9-68)

If A is negative, R1 can be calculated directly using Equation (9-74) below. Otherwise,

the following computations are made:

_(_. _- _)
C 1 = -_

(9-69a)

_l(_.g+ Ca)
C2 = d

(9-69b)

cmi_ = cos2_- 1 (9-69c)

For those values of q greater than Cmin (for j = 1 and 2), better values of Rlmin and

Rlmax can be determined as follows.

If q < 0, then

_)lmin ---- a cj -b _)
(9-70)
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If Olmtn > 0, then

k A

Rlmin = Qlmin L1 + P-s_ (9-71a)

(9-71b)

If cj > 0, then

01max = a Cj + (9-72)

If 01max > 0, then

-- A

Rlmax = Qlmax L1 + _, (9-73a)

RI= = I ,m xl (9-73b)

and no upper bound on R1 has been found for the associated value of R2 and L.

Next, a value is assigned to R1 for the current search level, L, and value of R2, as
follows.

If Rlmin < Rsl and if Rlmax > Rlup, then

R'I(L, R2) = rlo (9-74)

where rio is equal to the equatorial radius of the Earth, Re, plus 1000 kilometers (by
default), and

RI.(L, R2) = rlo - R1min (9-75a)

RIt(L, R2) = Rlup (9-75b)

No valid upper and lower bounds have been found.
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Otherwise,

Ramid= Rlmin + (R2 - Ramin)(rl° - ---_)kr2o
(9-76)

where r2o is equal to rio by default.

If Rlmid > Rlmax, then Rlmid = R2. Finally,

R'I(L, R2) = Rlmid (9-77a)

R1u(L, R2) = Rlmax - Rlmid (9-77b)

R1t(L, R2) = Rlmid - Rlmin (9-77c)

If Rlmax > Rlup, then

Rlu(L, R2) = Rlmid - Rlmin (9-78)

In this way, upper and lower limits on R1 are set for each of the two assumed values of

R2.

9.2.3.1.2 Preliminary Orbit Search for a Given Level

Upper and lower bounds for R1 have been set based on the cone-masking technique and

on the two trial values of R2 computed in Equations (9-62). A search is then undertaken

to identify values of Ra and R2 within the current search level that give the best agree-

ment with the input measurements.

Within the current search level, L, four times L (4L) trial pairs (R1, R2 ) are computed,

and an attempt is made to fit an elliptical orbit through each pair. Each (Ra, R2 ) pair is

determined by selecting values for two integer exponents (E_, E2 ) in the following man-

ner (see Figure 9-3). For the first search level (L = 0), Ea = E2 = 0 (i.e., the origin) is

used. For L = 1, integer exponents are chosen based on the coordinate values of the filled

dots on the innermost diamond in Figure 9-3. For L = 2, they are chosen from the
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L=I

Figure 9-3. Pattern Used in Determining Exponents for the

First Three Search Levels (L)

coordinate value of the filled dots on the next diamond, and so forth for each level. The

values of E1 and E2 for the first three levels are listed in Table 9-1.

For a given value of E2, R2 is computed using

R2 = Rs2 + h2 K E2 (9-79)

which corresponds to one of the R2 values found in Equation (9-62). The corresponding

value of R1 is found based on R2, L, Rlu, and Rlt, as follows. First,

J = max(5, 1) (9-80)

where K is the value in Equations (9-62). If E1 > 0 and if an upper bound for R1 was

found previously, then

R1 = R'I(L, R2) + Rlu(L, R2)(1 - jE1) (9-81)
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Table 9-1. Values of E1 and E2 for the First Three Search Levels

If E1>O

SEARCH LEVEL (L) E1 E2

0 0 0

1 I

0

-I

0

2

1

0

-1

-2

-1

0

1

0

1

0

-1

0

1

2

1

0

-1

-2

-1

and if no upper bound for R1 was found, then

i

R1 = RI(L, R2) + Rlu(L, R2)K -El (9-82)

If El < 0 and if no upper or lower bound for R1 was found, then

R1 = R'I(L, R2) - Rlt(L, R2) (1 - J-_") (9-83)

If E1 < 0 and if valid upper and lower bounds for R1 were found, then

R, = R'I(L, R2) - R,t(L, R2)(1 - K -_1) (9-84)

If the current search level is the first level, the initial orbital parameters and accuracy,

Q0, are determined as in Sections 9.2.3.2 and 9.2.3.3 using the initial estimates of Rz
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and R2 (rio and r2o, respectively). The orbital parameters and accuracy, Q, for the cur-

rent values of Ra and R2 are then found, regardless of the search level. If Q is less than

Qo, the current values of R1, R2, and Q are

Qo = Q (9-85a)

rio = R1 (9-85b)

r2o = R2 (9-85c)

and the next (R1, R2 ) pair for the current search level is processed.

If Q > Qo > Qmin (Qmin = 0.2 by default), then the next (R1, R2) pair is processed as

above. If Qo < Qmin, then the preliminary orbit search is ended, and the current values of

R1 and R2 are used as the starting values for the differential correction process discussed

in Section 9.2.3.4.

9.2.3.1.3 End-of-Level Search Processing

If, at the end of a given search level, the accuracy, Q, of all the points tried is still not

acceptable, the next search level is processed. If all search levels have been processed

and the accuracy is still not acceptable, then the best (R_, R2) pair found in the orbit

search (i.e., the pair that gave the smallest Q value) must be used as the initial estimate

for the differential correction process.

9.2.3.2 Computation of Orbital Parameters

The orbital parameters that are consistent with the current values for R1 and R2 are

determined using the procedure discussed in this section.

From Figure 9-1 and Equation (9-25), the slant range vector from the station to the

spacecraft is

= R'-] - FP--s_ (i = 1, 2, 3) (9-86)
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Dotting Equation (9-25) with itself yields Equation (9-43) rewritten for the ith measure-
ment as follows:

02 + oiC_ + (R_ l- R 2) -- 0 (i = 1, 2, 3) (9-87)

where

C_t -- 2L _t (i = 1, 2, 3) (9-88)

Solving Equation (9-87) for 01 and 02 by means of the Binominal Theorem gives

Oi = l{-c_t + _/C_i-4(R_i-Ri2)}
(9-89)

x_... where the positive sign on the radical is known to yield the correct root from physical

considerations. Initially estimating R1 and R2, Equation (9-89) can be solved for 01 and

Q2 and Equation (9-25) solved for R-1 and R---2. Knowing R---aand R---2merely defines the

orbit plane (in terms of Q and i) and two position vectors in this plane. However, there

are numerous orbits (in terms of a and e) that satisfy the two position vectors _ and R-2.

Therefore, a third position vector, along with the orbital dynamics relationships, is neces-

sary to uniquely determine the orbit being measured.

A

The quantity k is defined as the unit vector perpendicular to the orbit plane, i.e.,

m

^ R1 x R 2
k =

R1 R2
(9-90)

Then, since the third position vector R3 must lie in the orbital plane,

^

R 3 k = 0 (9-91)
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Substituting Equation (9-25) into Equation (9-91) yields

A

F_.s3 k (9-92)
_93 = A A

L3 k

Knowing Q3, the geocentric vector R---3can be obtained from Equation (9-25). Note that
A A

when 03 lies in the orbit plane, _3 and L3 are perpendicular to k and Equation (9-92)

is singular. Should such a singularity occur, a different measurement time t3 must be

used. Thus the vectors R_, R--2, and R3 have to be determined as functions of the esti-

mated vector magnitudes R1 and R2.

The difference in the true anomalies can be determined as follows:

cos (fj - fk) -- _ R---k (j, k = 1, 2, 3) (9-93a)
Rj Rk

sin (fj - fk) = S q/1 - COS2 (fj - fk) (j, k= 1, 2, 3) (9-93b)

where

f = true anomaly

s -- orbit direction indicator, determined as described below

If it is not known whether the orbit is direct or retrograde, this is determined as follows.

Initially, it is assumed that the orbit is direct (s = +1). The quantity Train denotes the

period of a spacecraft orbiting at the mean radius of the Earth, where

Tmin = 2z_ _ (9-94)

If Train < z'3 < -"/'1, then s is computed as

s = sign (R'--2 × R3)z (9-95)
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However, if -rl < Train and -rl < 7:3, then s is computed as

s = signt- R;]_2 Jz

= sign (wz)

(9-96)

Then the orbit direction, s, is assigned as

+_1 directs = 1 retrograde
(9-97)

and the orbital inclination, i, is given by

Wz .] (9-98)i = cos -1 sin (_22- fl)

The quantity Wz appearing in the equations above is the z component of the vector W.

This vector (which is parallel to the angular momentum unit vector), consistent with Ra

and R2 (assuming a direct orbit), is found using

B D

W- R1 x R2 (9-99)
R1 R2

If an orbit has been computed previously and the direction is to be determined, a test for

orbit reversal (i.e., direct to retrograde or vice versa) is made by comparing the sign of

the current value of Wz from Equation (9-99) with the corresponding value for the previ-

ous determination. If the signs are the same, no orbit reversal is assumed to have oc-

curred.

If the signs are not the same, such a reversal may have occurred, and this is accommo-

dated as follows. If

Tmin (9-100a)
-'g'l < ---

2
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and

r3 < Train (9-100b)
2

then such a reversal has already been allowed for through the value of s in Equa-

tion (9-97). Otherwise, the following computations are made:

fmin = min [[f2 - fa[, If3- f2l, 118o° -If2 - fll I, 118o° -If3- f2[] (9-101)

6 = 19o* -il (9-102)

The computed orbit direction is assumed to have changed if the inclination, i, is close to

90 degrees and if neither spacecraft position vector pair forms an angle close to 180 de-

grees. That is, if

and

6 < 1 ° (9-103a)

6 < 0.04 fmin (9-103b)

then

sin (f2 - fl) = -sin (f2 - fl) (9-104a)

sin (f3 - fl) = -sin(f3 - f_) (9-104b)

sin (f3 - f2) = -sin (f3 - f2) (9-104c)

and it is assumed that reversal has occurred.

To correct the estimated values of Ra and R2, it is necessary to compute the resulting

time intervals between (R3, R2) and (R-l, R2) to obtain residuals as actual time
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differences. The semilatusrectum obtained from Gaussiansector to triangle theory (Ref-
erence 2) is

P = R1 + C_3R3 - Cn R2 (9-105)
1 + Cr3 - Crl

or, dividing the numerator and denominator by CI

C1 R1 + C3 R3 - R2 (9-106)
P = C1 + C3 - 1

where

R2 sin (f3 - f2) (9-107a)C1 =
R1 sin (f3 - fl)

Crl = R--L1sin (f3 - fl) (9-107b)
R2 sin (f3 - f2)

C3 = R-Z sin (f2 - fl) (9-107c)
R3 sin (f3 - fl)

Cr3 - R1 sin (f2 - fl) (9-107d)
R3 sin (f3 - f2)

For very short measurement arcs, both Equation (9-105) and Equation (9-106) are poorly

determined, and the Gauss Method (Section 9.1.2) should be used. The singularity inher-

ent in Equation (9-105) when f3 - fl = _ can be avoided, along with other numerical

difficulties, by using Equation (9-106) when f3- fl -< If3- f21 and using Equa-

tion (9-105) when f3 - fl > If3 - f21.

From Equation (3-222) the conic equation for true anomaly is

e cos fi = p 1 (i = 1, 2, 3) (9-108)
Ri
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Expanding factors of the form sin (fl + f2 + f3) gives the following for

[sin (f2 - f,)l > [sin (f3 - f2)l"

e sin f2 = -e cos f2 cos (f2 - fl) + e cos fl (9-109)
sin (f2 - fl)

Otherwise,

e sin f2 = e cos f2 cos (f3 - f2) - e cos f3 (9-110)
sin (f3 - f2)

From Equations (9-108) through (9-110) the eccentricity, e, can be determined as

e 2 = (e cos f2) 2 + (e sin f2) 2 (9-111)

and the semimajor axis, a, is determined from

a m

P

1 - e 2
(9-112)

For an elliptical orbit (e < 1), the following are obtained:

n = --

a
(9-113)

T (9-114)

hp = a(1 - e) - 1% (9-115)

ha = hp + 2a e (9-116)
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where

a = semimajor axis

n = mean motion

T = orbital period in minutes

hp = perigee height

ha = apogee height

The eccentric anomaly, El, is given by

sin Ei = __Ri f_ - e 2 sin fi (i = 1, 2, 3)
P

(9-117a)

and

cos Ei = __Ri(e + cos fi) (i= 1, 2, 3)
P

(9-117b)

Equations (9-117) can be written as follows for the second measurement point:

S_ = [e sin E2] - R2 f_ _ e2 [e sin f2] (9-118a)
P

C_ = [e cos E2] = --R2 (e 2 + [e cos f2]) (9-118b)
P

The following equations for differences in eccentric anomalies expressed as functions of

true anomaly differences can be obtained by expanding Equations (9-117):

Re sin (f3 - f2) - R3 [1 - cos (f3 - f2)]S_ (9-119a)
sin (E3 - E2) - a_ P
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cos = 1 R3 R2 [1 - cos (f3 - f2)] (9-119b)
ap

sin (E2 - El) =
R1

R1 sin (f2 - fl) + -- [1 - cos (f2- fl)]S, (9-119c)a,/a p

R2 R1
cos (E2 - El) = 1 [1 - cos (f2 - fl)] (9-119d)

ap

Kepler's equation (Equation (3-178)) is written as

M = E - e sin E (9-120)

where M is the mean anomaly. Mean anomaly differences about the second point can be
written as

M3- M2 = E3-E2+ 2 Se sin2 (Ea-E2)• _ - C. sin (E3 - E2) (9-121a)

M2-M1 = F-.2-E1-2Se sin2( .E2 -El) - C, sin (E2 - El) (9-121b)

where

r sin (E3 - F-a)] (9-122a)E3 - E2 = tan-1 L-c_os(E3 E22)

rsin (E2 - El) l
E2 - E, = tan-' [_-oos (E2 E,) J

(9-122b)

9.2.3.3 Determination of the Accuracy of the Computed Orbit

A determination can now be made of how well the computed orbit fits the measurements

by comparing the times between measurements, as determined from the computed orbit,
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with the true measured times. First, using the mean anomaly, the mean time interval

between the computed measurements is calculated as follows (not allowing for multiple

revolutions between measurements):

, M2 - M1 (9-123a)
- I"1 -

n

, M3 - M2 :o.loah_
I"3 = k., .t_,J_ /

n

Next, the number of full revolutions (2) between consecutive measurements (if these are

not known) are approximated as

A21 = INT
(9-124a)

_'32 = INT
(9-124b)

The total computed time between consecutive measurements,

T21c = -l'l + )],21

Tc, is then computed by

(9-125a)

T32e = _3 + _32 (9-125b)

If a differential correction is currently being performed, the differences between meas-

ured and computed time differences are determined as

AT21 = - I'1 - T21¢ (9-126a)

AT32 = l_3- T32e (9-126b)
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and the overall accuracy of the fit, Q, is computed as

Q = _/AT221 + AT22 (9-127)

If a differential correction is not currently being performed, the following values are set:

I-r1 T2j_c.1 (9-128a)T21T = max "F_c' - rl I

I%3 T32c 7 (9-128b)T32 T = max T'_2c ' r3 d

and the accuracy of the current fit, Q1, is computed as

Q1 = _/(T21T - 1)(1 + 0.5 2221) + (T32T - 1)(1 + 0.5 222) (9-129)

I t

If both -r 1 and r3 are greater than 0.5 Tmin, then the accuracy for the reverse orbit is

also determined as above using

T'21 = 2_r - (M2 - M1) (9-130a)
n

, 2_ - (M3 - M2) (9-130b)T32 =
n

in place of T21 and T32, thus generating an accuracy Q2.

If Q1 < Q2, then the original orbit fit is accepted, the orbit accuracy, Q, is set equal to

Q1, and T21 c and T32c are kept. Otherwise, the reverse orbit direction is accepted as best,

Q is set equal to Q2, and (from Equations (9-130))

T21c = T'21 (9-131a)

T32c = T'32 (9-131b)

In either case, the time differences, AT, are determined next using Equations (9-126).
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9.2.3.4 Initiation of the Differential Correction Process

Once the parameters for the initial orbit fit have been determined as above, the accuracy

of the fit is determined using Equation (9-127). If the accuracy is less than a lower limit,

the orbit has been adequately determined. Otherwise, an iterative differential correction

process is initiated to refine the orbit (i.e., obtain a better fit to the measurements). Each

iteration consists of the following steps:

1. Assuming the current values of R1 and R2, a new set of orbital parameters at radius

values (R1 +AR, R2) (where AR = 10 -5 kilometer) are determined via the method

given in Sections 9.2.3.2 amd 9.2.3.3, yielding the parameters AT21(Ra+AR),

AT32(R1 +AR), Q(R1 +AR).

2. Another set of parameters is then determined at radius values (R1, R2 +AR), yield-

ing parameters AT21 (R2 + AR), ATa2(R2 + AR), Q(R2 + AR).

3. Next, one of two methods is used to derive the corrections, 6ri, to the assumed

values of Ri. For the first 12 iterations, a simultaneous linear equation method is

used; and for the remaining iterations, a Newton-Raphson method is used.

9.2.3.4.1 Method of Simultaneous Linear Equations

In this method, corrections to the assumed radius magnitudes, dra and dr2, are found by

forcing Equation (9-127) to zero. Using a two-dimensional Taylor series expansion and

keeping only the linear terms,

0 = AT21(R1, R2) +
0AT21

0AT2a AR1 + AR2 (9-132a)
0Ra 0R2

0 = AT32(R1, R2) +
0AT32

0AT32 ARa + AR2 (9-132b)
0R1 0R2

The partial derivatives are approximated by

0AT21 _ AT21(Rx +AR, R2) - AT2i(R1, R2) (9-133a)

0R1 AR

0AT21 AT2a(R1, R2+AR) - AT21(R1, R2)

0R2 AR
(9-133b)
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0AT32 AT32(R1 +AR, R2) - AT32(R1, R2)

0Ra AR
(9-133c)

0AT32 ATa2(R1, R2 + AR) - AT32(RI, R2)

OR2 AR
(9-133d)

The determinant (det) of Equations (9-132) is then found as

det = 0AT2a 0AT32 0AT32 0AT21 (9-134)
OR1 0R2 0R1 0R2

If [det[ < 10 -is, then the Newton-Raphson method described in Section 9.2.3.4.2 is

used. Otherwise, the corrections fir1 and tSr2 are found using

deh = 0AT32 AT21(R1, R2) - 0AT21 AT32(R1, R2) (9-135a)
0R2 ORE

0AT21 0AT32
det2 = AT32(Ra, R2) - AT21(R1, R2) (9-135b)

0R1 0R1

6rl = deh (9-136a)
det

(_r2 = det2 (9-136b)
det

The effective slope of the hyperplane satisfying Equations (9-132), on which the 6ri lie, is

found as

S = Q(R1, R2)

v/6r 2 + 6r22 (9-137)
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9.2.3.4.2 Newton-Raphson Method

In this approach, the accuracy, Q, of the solution is forced toward zero by varying the Rt •

Using

Qo = Q(Ra, R2) (9-138a)

Qa = Q(Ra + AR, R2) (9-138b)

Q2 = Q(R1, R2 + AR) (9-138c)

found as described in Section 9.2.3.3 (after Equations (9-130)), the following approxima-
tions are made:

OQ Q1 - Qo
= (9-139a)

0R1 AR

OQ Q2 - Qo
= (9-139b)

0R2 AR

The corrections dri are then found using

/(oo], (oQ3,
S = V _'0RI"J + _0R2J

(9-140)

(0_1) Qo
(_r I = _

S S

(9-141a)

(0_2) Q0
dr2 = -

S S

(9-141b)
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9.2.3.4.3 Scaling of the Solution

Next the drt are scaled so that they do not exceed the maximum allowed corrections. If

Qo -- Q(R1, R2), then the scaling factor So is determined as follows:

1
SM - (9-142)

max 1&21 I& l 16r2 [3 ' 3 ' Cmax' Cmhl _- h2

So = min (1.0, SM) (9-143)

where

Crnax

hl

h2

Rs2

= maximum allowed correction

= R1 - R, 1

= R2 - Rs2

= distance of the station from the center of the Earth for the measure-

ment at tl

= distance of the station from the center of the Earth for the measure-

ment at t2

Next, the solutions are scaled using

6rl = So ¢5rl (9-144a)

6r2 = So _r2 (9-144b)

If the computed slope, S, is not too close to zero, then new values of AT21, AT32, and Q

are found at (Rl+tSrl, R2+tSr2) using the methods described in Sections 9.2.3.2 and

9.2.3.3. The accuracy, Q, is then set as follows:

01 = Q(R1 + 8rl, R2 + &r2) (9-145)
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If Q1 < Qo (i.e., if the solution with dr1 and dr2 is better), the inner loop processing

described in Section 9.2.3.4.4 is skipped.

If S is too close to zero or if Q1 is greater than Qo, the 6ri are again scaled so that

neither exceeds the magnitude of the adjustment on the last loop of the same differential

correction type (i.e., Newton-Raphson or linear equations method). This is done using

(9-146a)

S1 = 1 (9-146b)

max (1.0, tiff---;)

6rl = $1 6rl (9-146c)

6r2 = S1 6r2 (9-146d)

where 8' is the value of fl from the previous loop of the same differential correction type.

New values of AT21, AT32, and Q at (R1 + 6rl, R2 + _r2) are then found using the methods

described in Sections 9.2.3.2 and 9.2.3.3. If Q1 is greater than Qo, then the inner loop

processing described in Section 9.2.3.4.4 is performed, initially halving (r/ = 1/2) the 6ri

to get better agreement.

If

Q1 < Qo (9-147a)

but

S1 > 1.0 (9-147b)

then inner loop processing is skipped. Otherwise inner loop processing is performed,

initially doubling (r/ = 2.0) the _ri tO try for better agreement.
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9.2.3.4.4 Inner Loop Processing

At this point in outer loop processing, up to 20 inner loops will be performed, each inner

loop scaling the 6ri to try to get better accuracy. In this discussion, the following defini-

tions are made:

and

6rl = r/. dri (i = 1, 2) (9-148a)

Q1 = Q(RI + dr1, R2 + 6r2) (9-148b)

Qo = Q(R1, R2) (9-148c)

If

I&ll - I&;I < 0.25 Ar (9-149)

(where Ar = 10 -5 Re), then dri is accepted (not drl), and inner loop processing is termi-

, S r thated. Otherwise, AT21 AT32, and Q' are recomputed at (R1 +t St1, R2 +t5 2), where

' r'Q' = Q(R1 + dr1, R2 + d 2) (9-150)

If r/ > 1 and Q' > Q1, then 8ri is accepted (not drl), and inner loop processing is termi-

nated. Otherwise, more inner loops are performed.

If r/ < 1, then

I dr'l = ,/(&'l) 2 + (dr'2) 2 (9-151)

If Q' -> Qo but [ dr' [ < 0.5 Ar, then a solution has been obtained and inner and outer

loop processing is terminated. If Q' - Qo but [ dr' [ > 0.5 Ar, then the next inner loop

is performed.
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If Q' < Q0 but the Newton-Raphsondifferential correction method is being used, then
inner loop processingis terminated becausea good solution is assumed.If Q' < Qo but
the linear equation method is being used, a parabolic fit is tried using the following:

1
_=2 (Q0 Q2Q Q_ Q1) (9-152a)

6rl = 6r'1 (9-152b)

8r2 = tSr_ (9-152c)

6r; = tSrl (1 + _) (9-152d)

6r'2 = tSr2 (1 + _) (9-152e)

New values of AT21,

Qx = Q, (9-152f)

AT32, and

O' = Q(R1 + 6r'x, R2 + fir's) (9-153)

t t

are found as before at (R1 +tSri, R2 + tSr2). If Q' < Q1, a good vector has been obtained

and inner loop processing is terminated, keeping 6r_ and tSr_ as the best values. Other-

wise, the orbit found using the 6r_ was poorer than the one using _ri; in this case, inner

loop processing is terminated, keeping 6r_ and tSr2 as the best values.

9.2.3.4.5 End of Differential Correction Loop Processing

If all inner loops are exhausted with no orbit improvement being found (i.e., if Q' > Q0

at the end of loop processing), then no more loops are performed. Otherwise the new

values for R1 and R2 are found using

R1 = R1 + tSrl (9-154a)

R2 = R2 + d_r2 (9-154b)
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If the value of Q corresponding to the Ri in Equations (9-154) is less than a specified
tolerance (whose default value is 0.0005 second), the solution is deemedacceptableand
no more iterations are performed.

If Q/Q0 is less than 0.99, the differential correction process is converging rapidly enough
and further iterations are performed. Otherwise, the accuracy improvement is too small
and the differential correction on this loop is said to have failed. If a total of three (not
necessarilyconsecutive)loops fail in this way, further corrective measuresmust be taken.

If the initial estimatesof the heightsor radius magnitudeswere input or the total timespan
(t3 - tl) is less than 5 minutes, and if the minimum acceptable perigee has not been
lowered previously, then the minimum perigee height is lowered by 0.1 Re,and further
loops are attempted. Otherwise a second preliminary orbit search is performed as de-
scribed in Section 9.2.3.1 using default heights of 20,000 kilometers, and the entire orbit
extraction process is reinitiated.

9.2.3.4.6 Determination of Final Orbital Vector

Once the differential correction loops have been completed, the final orbital parameters

are determined as before, and the final spacecraft velocity vector, _2, is generated using

- a[1 - cos (E3 - E2)] (9-155)f 1

g = r3 - [E3.- E2 - sin (E3 - E2)] (9-156)

-- 1
R2 = -- (R-3 - f R2) (9-157)

g

9.3 RANGE AND ANGLES METHOD

The Range and Angles Method determines the spacecraft position and velocity by fitting

two-body orbit relations to GRARR, C-band, or USB range and gimbal angle data in a

regression manner.

A set of m chronologically ordered radar data vectors are available from the GRARR,

C-band, and/or USB systems. Each vector consists of a range measurement and two
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gimbal angle measurements. The measurement vectors are first transformed to the
station-centeredtopocentric local tangent Cartesian coordinate system. The GRARR and

USB angles, X and Y, are transformed to azimuth, A, and elevation, E, as shown in

Equations (9-8) and (9-9). The C-band data vectors and transformed GRARR and USB

data vectors are then transformed to local tangent coordinates as follows:

Plti

XIt

= Yn

Zlt

= Qi

m

COS Ei sin Ai

cos Ei cos Ai

sin Ei

(i = 1, 2, ..., m) (9-158)

The local tangent vectors are then transformed to true of reference date or mean of

B1950.0 or J2000.0 inertial coordinate systems as described in Section 9.2.1, i.e.,

O-i = (Mu B C) T _-ui (9-159)

The station position vector in geocentric inertial Cartesian coordinates, given in Equa-

tion (9-24b), is

R-s, = (B C) T r_bi (9-160)

where the station coordinates in body-fixed axes are given in Equations (9-15) and (9-16).

Vectorially adding the station vectors, _, and topocentric spacecraft vectors, Q-_,yields

the geocentric spacecraft position vector

R-i = R--_ + O-i (i = 1, 2, ..., m) (9-161)

A two-body orbit is then fitted to the m position vectors by using the f and g series,

expanded about a desired epoch time

Ri = fi _ + gi _0 (i = 1, 2, ..., m) (9-162)

Multiplying the preceding equation by fl and then summing on i yields

m m m

Z fiR'-i = Z f2ff_3 +Z figi _-0

i=l i=l i=l

(9-163)
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Multiplying Equation (9-162) by ga and summing on i yields

m m m

1=1 i=l i=l

(9-164)

Solving Equations (9-163) and (9-164) simultaneously for Ro and 1_o yields the desired

inertial geocentric position and velocity at epoch:

m m m m

= i=l t=1 1=1 i=l

g? - f,

t=1 1=1 t=1

(9-165)

In m na m

E f_ Z gt_- Z figi Z fiR-]

-- i=1 i=1 1=1 i=1

R° = I_ 1 g_2 (9-166)
i=l i=1 i=

Equations (9-165) and (9-166) are solved iteratively by successively improved approxima-
tions for ft and gi.

The orbit is initially approximated by a circular orbit with the semimajor axis, a, obtained

by averaging the m position vectors as follows:

rll

'Za = -- IP I
m

i=l

(9-167)

The mean motion, n, is

(9-168)

9-46



and the mean anomaly measured from epoch is

Ml - Mo = n(ti- to) (9-169)

The coefficients f and g for the two-body circular orbit, corresponding to each measure-

ment vector, are (Reference 2)

fi = cos (Mt - Mo) (9-170a)

1 (9-170b)gi = -- sin (Mt- Mo)
n

Substituting the preceding ft and gi into Equations (9-165) and (9-166) yields the first

approximation for P-o and fro. After the initial iteration, the coefficients fi and gi are

calculated from the following procedure.

Reference 3 presents a general method for computing fi and gi as functions of Ro and

1_,o. The Sundman transformation is used to obtain a new independent variable 7) defined

by

_0 = 1 (9-171)
R

The coefficients fi and gi are determined from the relations

fi = 1 ,u S2( Pi) (9-172a)
Ro

gi = to Sl(_)i) + (70 S2(1/)i)
(9-172b)

The velocity _i can be determined by

(9-173)
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where

/,g S 1 (_)i)

Ri Ro
(9-174a)

gi = 1
a S2( l)

Ri
(9-174b)

and the time difference between _ and _ is

ri = ti - to = Ro Sl(_i) + % S2(_t) + /_ S3(_Pi)

The parameters % is

(9-175)

% = _ _ (9-176)

and the parameters $1, $2, and $3 are obtained by solving Kepler's equation by succes-

sively approximating V to satisfy Equation (9-175). The method, described in Refer-

ence 3, is summarized below.

After initially estimating a value of _, the quantity 2 is calculated from

2 = a _2 (9-177)

where

-- -- 2/_

a = Ro Ro Ro (9-178)

If [ 2 [ > 1, the value is saved as Ip, and I is repeatedly divided by 4 (keeping track of

the number of divisions, m) until It [ < 1.

The parameters Co, C1 ..., C5 are next computed as functions of 2, as follows:

(9-178a)

C 4 =(I +[I +[I +(I ÷[I ÷[1 (9-178b)
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C3 :

1
7 * x(3c5) (9-178c)

1 (9-178d)
C2 : _- + ,_C4

cl : 1 • _c3 (9-178e)

Co = I + at2 (9-178f)

If the initial value of 2 has been reduced (i.e., M > 0), then Co is compared with the

quantity

,
Co = L2(2.__)]

(9-179)

where MAX is approximately the maximum positive number representable in the com-

puter (e.g., MAX = 1075 for the IBM 4300 series). If Co > Co, then Co is set equal to
t

Co. Next, Ca is compared as follows:

_MAX/ (if Co < 1)
C'a -- (9-180)

(C_) (if Co >- 1)

t t

If Ca > Ca, then Ca is set equal to Ca. With these values of Co and C1, new values are

computed by applying the following equations M times:

Ca = Ca Co (9-181)

Co : 2C_- 1 (9-182)

The new values for C2, C3, C4, and Cs are found using 2p from

C2 - Co- 1 (9-183)
2p
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C1 - 1

c3 = (9-184)

C2 - 0.5
c4 = (9-185)

3C3 - 0.5

3C5 = 2p (9-186)

The parameters $1, $2, and $3 are calculated as functions of C1, C2, C3, and _ as
follows:

$1 = C1 _ (9-187a)

$2 = C2 _p (9-187b)

$3 = C3 _p (9-187c)

The time interval between the point corresponding to _p and the reference epoch, to, is

determined from Equation (9-175) to be

r(_p) = RoS_ + aoS2 + /iS3 (9-188)

and the geocentric radius corresponding to _0 is

R(_) = IRoCo + o'oS_ + /zS2[ (9-189)

The difference between the desired time increment ri and r(_) is

Ar = r_ - ro Sl(_p) - ao S2(_p) - _ S3(_) (9-190)

The successive approximation scheme involves correcting _p to cause Ar to vanish. The

finite difference form of Equation (9-171)

_i = ti - to (where_ - 0att = to) (9-191)
R
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aids in determining the iterative correction algorithm

Az" (9-192)
V)k÷l = 1/)k- k(_k)

When the solution has converged, the value lDi that yields ri is obtained. Values of Sl(_)i)

and S2(1Di ) are a by-product and are used to determine fi and gi by means of Equa-

tions (9-172).

Repeating the preceding process for the data times h, t2, ..., tin, the values of fi and gi

(for i = 1, 2, ..., m) are obtained for substitution into Equations (9-165) and (9-166),

along, with data measurements R1, R2, ... R--re. These equations yield new estimates of Ro

and ff.o to commence the next iteration. This computational sequence is shown schemati-

cally in Figure 9-4.

9.4

,

.

°

°
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APPENDIX A--TRAJECTORY SENSOR SYSTEMS
FUNCTIONAL DESCRIFHONS AND PREPROCESSING

The trajectory sensor systems measure the various propagation characteristics of electro-

magnetic or optical signals transmitted between the satellite and tracking stations (or

other reference sources). These data are subsequently used to determine the satellite

trajectory. The dependence of these measurements upon the relative states of the space-

craft provides the key to the orbit determination process.

This appendix provides a brief functional description of the trajectory sensing systems

currently included in GTDS. It also describes the procedures followed in preprocessing

the data prior to GTDS processing. (More detailed descriptions are available in Refer-

ences 1 and 2.) The computations given in these descriptions are independent of GTDS

and are presented primarily for informational purposes. However, they do provide an

insight to the condition of the data at the preprocessor/processor interface which is neces-

sary to understand the processor measurement models described in Chapter 7.

A.1 GODDARD RANGE AND RANGE-RATE (GRARR) SYSTEM AND

APPLICATIONS TECHNOLOGY SATELLITE RANGING (ATSR)

SYSTEM (No Longer Operational)

The functional and preprocessing descriptions for the GRARR and ATSR systems are

given in the following subsections.

A.I.1 FUNCTIONAL DESCRIPTION

The GRARR System (References 1 through 7) and the ATSR System (References 1, 6,

and 7) determine and record the spacecraft range, radial velocity, and angular position.

The GRARR and ATSR systems are located at the tracking sites shown in Table A-4 of

Reference 8. These systems transmit a continuous wave signal from the tracking station

antenna at a carrier frequency, vT, which is modulated by a low-frequency tone, VL. This

signal propagates to the spacecraft's omnidirectional antenna, where the received fre-

quency, Vv, appears to be slightly different from that transmitted (vT) because of the

uplink Doppler shift. The received signal is modified by the spacecraft transponder elec-

tronics and retransmitted back to the ground tracking station. Again, the signal experi-

ences a downlink Doppler shift so that the frequency, vR, received at the ground, differs

from that transmitted to the spacecraft. The 30-foot-diameter ground receiving antenna is

automatically steered through two gimbal angles, X30 and Y30 or A and E (shown in

Figure A-l), to maximize the received signal strength. As the signal is processed through

the ground electronics system, the spacecraft transponder modification is undone and the
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transmitted carrier frequency is subtracted. At the output, the differenced Doppler signal

(reflecting the uplink and downlink Doppler shifts) is modified by the addition of a bias

signal of known frequency, vb.

ZENITH

.+X3o'_

__ ,.,-"- NORTH

/ _N,, "TRACKING STATION

EAST LOCAL HORIZONTAL PLANE

Figure A-1. Schematic of GRARR Gimbal Angles

The following three different types of measurements result from signals received during

the frame time interval which begins at frame time tF:

. The gimbal pickoff angles, X and Y or A and E, defining the direction of the

received signal path at the antenna at time tF, are recorded in degrees and

decimal fractions.

. The two-way range time delay is measured as a count C1 of the number of

cycles of a reference frequency VR1 occurring between positive-directed zero

crossings of the low-frequency ranging tone (frequency = VL)associated with

the transmitted and received signals. The counter is started and the frame

time, tF, is signaled simultaneously by a zero crossing of the transmitted sig-

nal. The counter is stopped by the next zero crossing of the received signal.

Since the lowest sidetone frequency for the GRARR System is 8 hertz, the

maximum unambiguous one-way range measurement corresponds to a distance

of approximately 18,787 kilometers. Distances greater than this produce phase

shifts larger than one cycle of the VL signal. When this occurs, the GRARR

System utilizes a pseudorandom binary code to determine the range ambiguity
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number, Oa, the number of whole cycles to be added to the counter-measured

fractional phase shift. The ATSR System does not require an ambiguity resolv-

ing system since it is used only in conjunction with ATS synchronous satellites

which remain in the same ambiguity period during a pass.

3. The two-way range-rate measurement is made by counting the number of cy-

cles, Co, of a reference frequency, VR2, required to count exactly N cycles of

the Doppler-plus-bias signal, Vd + VD, in the GRARR System and 100 times

Vd + VD for the ATSR System. The count also is started at the frame time, tF,

and ended after the accumulation of N cycles of the va + VD signal. All

GRARR stations except Santiago have been modified to remove the depend-

ency of Co on the independent frequencies vb and VR2. The modification

amounts to deriving the reference and bias frequencies from the same source

as the transmitted frequency.

The gimbal angles X30 and Y3o (or A and E) are measured only at the frame time, tF;

but the range and range-rate measurements are made at the frame time and at three

subsequent data sample times ts within the frame time interval. The spacing of these data

samples (and hence the timespan of a data frame) can be varied to give range and range-

rate recording rates of four, two, or one samples per second or six samples per minute.

ATSR stations can also record at a rate of eight samples per record. The data, one angle

sample and four range and range-rate samples for each frame, are punched on paper tape

at the tracking station in standard Baudot five-level teletype code and then transmitted to

GSFC via teletype to be preprocessed.

A.1.2 PREPROCESSING DESCRIPTION

The GRARR and ATSR data processing procedures and interfaces are obtained from

References 1 through 6 and have been revised to reflect subsequent modifications in the

software. Emphasis is placed on the preprocessor computations, but the interfaces with

the stations and the processor are also included. Figure A-2 summarizes the sta-

tion/preprocessor/processor interfaces and provides an aid in the ensuing description.

The data are formatted into frames at the station. Each frame contains four sets of range

and range-rate measurements, Co and C1, as well as a single set of gimbal angles, X30

and Y3o (or A and E). Each frame is time-tagged in station time, tR. Prior to transmis-

sion to GSFC, data calibration corrections are applied to the data, and the time tag is

corrected for the propagation delay of the WWV radio signal from transmission to its

reception at the tracking station, i.e.,

tv = tR + Atwwv (A-l)
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tf, CO, C1

X3O, Y30

STATION

l F = tl + Atwwv

AtR = C1/_ 1 -Ar

t= = tF + K AtRD -t- At_

¢

O' = _- AtR

AtR = Q'/C

tR = t= - AtR

Qavg

c ("b- N _21Co)

2w - ("b- N ,,R21C0)

c (ml - m2 N/C0)

(2 - ml) - mz N/Co

c (Vb- N ,,RzlCo)

2oow - (_o - N _z/Co)

GRARR
SANTIAGO

GRARR

FREQUENCY

INDEPENDENT

ATSR

O = 0' + CIO^/_-- - -_

ATMOSPHERIC

REFRACTION

CORRECTION

FORMAT A

X3o, Ati_, Co, D, H, M, S, Ati_, Co

IR, CO, IS, IT, Vr, n, AIR,

FORMAT B

IS, IT

D, H, M, S

Is, IT

n

O A =

VL =

Air =

ArD =

DAY, HOUR, MINUTE, AND SECONDS OF TIME q_

SATELLITE AND TRACKER IDENTIFICATION

SAMPLING RATE INDICATOR

RANGE AMBIGUITY NUMBER

LOWEST SIDETONE FREQUENCY

STANDARD TRANSPONDER DELAY (A_ = 17.1 MICROSECONDS FOR VHF AND

0 FOR S-BAND) APPLIED AT THE STATION

DEVIATION FROM THE STANDARD DELAY APPLIED IN THE PROCESSOR

Figure A-2. GRARR and ATSR Data Preprocessor Computations and Interfaces
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Thus, tF corresponds to the UTC time at initiation of the range counter. Each range

measurement, C1, is divided by the reference frequency, val, thereby converting it to a

time interval, Ata, with a standard transponder delay, Az, accounted for as follows:

AtR = C1 Ar (A-2a)
VR1

where

AI-= [_ 0 (for S-band) (A-2b)

t--- 17.1 microseconds (for VHF)

Each frame of data is received at GSFC in approximately the format A shown in Fig-

ure A-2 (data quality, carriage return, line feed, and figure shift indicators are omitted).

These data are then preprocessed as described in the following subsections.

A.1.2.1 Gimbal Angles

The gimbal angles, X3o and Y30 (+00.00 to +90.00 degrees) or A (000.00 to

360.00 degrees) and E (000.00 to 090.00 degrees), are unaltered in the preprocessor.

Atmospheric refraction corrections must be applied later in the processor.

A.1.2.2 Range

The range measurement, C1, is corrected to the two-way propagation time interval, AtR,

at the station. In the preprocessor, the interval is converted to one-way distance by multi-

plying by one-half the velocity c of the signal propagation as follows:

O' = c AtR (A-3)
2

where c is equal to the speed of light.

The preprocessed range, P', always lies in the first ambiguity period and must, therefore,

be corrected for range ambiguity in the processor. Furthermore, the transponder delay is

a function of the received signal frequency at the spacecraft transponder. Therefore, any

deviations from the standard transponder delay deducted in the preprocessor must be

accounted for in the processor. The time at each of the four range samples within each

frame is

ts -- tF + k AtRD (k = 0, 1, 2, 3) (A-4)

where AtRD is the reciprocal of the recording rate.
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The time ts is the ground receive time in UTC, corresponding to each range sample. The

range and gimbal angles correspond to the spacecraft's position at the time it retransmits

the tracking signal. Therefore, the times must be corrected for the one-way light time in

the processor. The gimbal angles correspond to the first time (i.e., k = 0 in Equa-

tion (A-4) on each frame).

A.1.2.3 Range Rate

The interpretation of the Doppler cycle count, Co, as a measure of the tracking station-to-

spacecraft relative range rate rests upon the following assumptions:

° The Doppler effect can be adequately represented by the theory of special rela-

tivity.

2. A simplification can be made in representing the motion of the tracking station.

Assuming the tracking station motion is uniform in inertial space, it is shown in Appen-

dix C that the average range rate (in the sense of the Theorem of the Mean) over the time

interval between t_ and ts+AtRR is

( N)C V b A_RR

where the Doppler-plus-bias count time interval, AtRR, is

C0
AtRR = (A-6)

VR z

Equation (A-5) is used for the GRARR station at Santiago. Since ATSR stations count

N cycles of 100 times the two-way Doppler-plus-bias frequency, the range-rate equation
for the ATSR station data is

c vb A_RR
b,,vg = (A-7)

200V-r - (vb ANRR)
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The average range rate, 0avg, in Equations (A-5) and (A-7) is dependent on the three

frequencies vw, Vb, and VRz. Four of the GRARR stations were modified by driving Vb

and vR2 with the transmitted frequency VT, i.e.,

Vb = ml VT (A-8a)

VR2 = m2 VT
(A-8b)

where ml and m2 are the constants given in Table A-1.

Table A-1. GRARR Station Constants

GRARR STATIONS

Rosman
VHF crystal

Tananarlve
_- S-band crystal

Carnarvon
S-band PLL*

Falrbanks

ml

115000

1/3600

G/4500

m2

1/15

1/180

01225

*O = phase locked transponder multiplication constant (Reference 6)

Substituting Equations (A-8) into (A-5) yields the relation for preprocessing Doppler data

from these frequency-independent GRARR stations, as follows:

C ml - m2

(A-9)
bavg =

(2-m,)-(m2 _-----o)

A more precise modeling of the Doppler data is provided by the range difference formula

in Appendix C. In this optional processing mode, the preprocessor computes

b - C (Vb AtRR - N) (A-IO)
2VT Ataa
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rather than 0avs' The processing program compares 0 with the range difference calcu-
lated by Equation (7-41).

A.1.2.4 Smoothing

The range, range-rate, and gimbal angle data are finally smoothed by regressively fitting

low-order (third or fourth) polynomials to at least 20 samples each of range and range

rate and at least 5 samples each of the gimbal angles. A least-squares method is used for

the polynomial fits, and a 2.5tr data rejection criterion is used to eliminate wild data. The

midpoint values of the polynomials replace the original data. The smoothed values are

stored in a format similar to format B shown in Figure A-2 for subsequent use in the

processor.

A.2 C-BAND RADAR TRACKING SYSTEMS

The STDN C-band radar tracking systems are amplitude-comparison monopulse instru-

mentation systems that measure the range, azimuth, and elevation of spacecraft. The

range measurement is unambiguous up to 59,926.118 kilometers.

The NASA C-band radars are of two basic types: the FPS-16 and the FPQ-6, both of

which have a low-speed data rate of one per 6 seconds. In addition, there are FPQ-14,

FPQ-13, FPQ-15, TPQ-18, and ALCOR C-band radars. Descriptions of all these radar

types are as follows:

@ FPS-16 Radar. This radar has a 3.6-meter diameter parabolic antenna mounted

on an azimuth-elevation pedestal. The antenna reflector surface consists of

wire-mesh panels supported by radial trusses. The antenna has a four-horn

monopulse feed supported on a tetrapod located at the focal point of the an-
tenna reflector.

FPQ-6 Radar. This radar is a second-generation system derived from the

FPS-16 and offers several major improvements: tracking capability to greater

distances, greater angle tracking precision, and rapid target detection and lock-

on. It has a 9-meter diameter, solid-surface, aluminum parabolic antenna with

Cassegrain feed. The FPQ-6 antenna is mounted on an azimuth-elevation ped-
estal.

FPQ-14, FPQ-15, FPQ-13, and TPQ-18 Radars. The FPQ-14 radar is similar to

the FPS-16 and offers all of the improvements of the FPQ-6. The radar is

computer integrated with the on-axis system. The FPQ-15 radar is functionally

identical to, but differs physically from, the FPQ-14. The FPQ-13 radar is simi-

lar to the FPS-16, but has a more powerful transmitter, a 6.1-meter diameter
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antenna, and is computer integrated with the on-axis system.The TPQ-18radar
is identical to the FPQ-6, except that the electronic equipment is housed in
modular shelters, making the entire systemtransportable.

• ALCOR Radar. The Advanced ResearchProject Agency, Lincoln C-band Ob-
servableRadar (ALCOR) is a high-power, narrowbeam, coherent, and chirped
C-bandmonopulse systemcapableof simultaneousskin and beacon tracking. It
provides azimuth, elevation, range, and range-ratedata. It hasa range accuracy
of 0.5 meter in narrowbandmode, 0.1 meter in wideband mode, and an angle
accuracy of 0.005 degree. The ALCOR has a 12.2-meter diameter parabolic
antenna with a gain of 54 decibels and a beamwidth of 0.3 degree. The peak
power output of the ALCOR radar is 4 megawatts,with an averagepower of
10 kilowatts.

The functional and preprocessingdescriptions for the C-band radar tracking systemsare
given in the following subsections.

A.2.1 FUNCTIONAL DESCRIPTION

The pulse radars used most frequently to support NASA satellite tracking are listed in

Table A-4 of Reference 8. These radars measure the two-way light time from the antenna

to the spacecraft as well as the antenna pointing angles. The antenna gimballing system

records the azimuth and elevation angles A and E shown in Figure A-1.

The usual mode of tracking a satellite via a C-band radar is similar to the GRARR Sys-

tem. The two-way light time of a transmitted pulse and associated gimbal angles are

measured and time-tagged at the ground receive time of the return pulse. The range

measurement is corrected for satellite transponder time delay, and the time tag is cor-

rected for system delays and WWV propagation time delay. The resulting two-way time is

converted to units of distance by multiplying by one-half the speed of light. These correc-

tions are performed at the tracking site. There is no range ambiguity or range-rate associ-

ated with this type of system.

A.2.2 PREPROCESSING DESCRIPTION

The data received from the C-band tracking site is calibrated, corrected for transponder

delay, and time corrected. The preprocessor converts the range data from yards (received

from the station) to kilometers (1 meter equals 3.280839895 international feet) and the

gimbal angles from mils to degrees (6400 mils equals 360 degrees). The time tag corre-

sponds to the ground receive time.

Capability must be provided in the processor to account for atmospheric refraction and

light-time correction of the time tag.
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A.3 STDN RANGING EQUIPMENT (SRE) UNIFIED S-BAND (USB)

AND VERY HIGH FREQUENCY (VHF) SYSTEMS

The functional and preprocessing descriptions for the SRE USB and VHF systems are

given in the following subsections.

A.3.1 FUNCTIONAL DESCRIPTION

The SRE system provides sidetone ranging and coherent Doppler tracking data. The SRE

operates with the wideband exciters and the wideband multifunctional receivers (MFRs).

The SRE is used with both the USB and VHF systems.

The SRE VHF ranging system operates in the 136- to 155-megahertz band. This system,

when measuring the range, uses either basic sidetone ranging techniques or a hybrid

ranging mode that uses sidetones and a pseudorandom ambiguity resolving code (ARC).

Range-rate measurements are obtained by using coherent Doppler techniques.

The USB System provides Doppler, range, and angle tracking capability, with concurrent

transmission and reception of voice, command, television, and telemetry data. The SRE

USB system operates in the 2025- to 2300-megahertz band and utilizes a single carrier

frequency to provide tracking and communication with the spacecraft. The sidetone range

measurement is independent of the Doppler measurement and is unambiguous up to a

range of approximately 15,000 kilometers. A pseudorandom ARC extends the unambigu-

ous range measurement to approximately 644,000 kilometers. The USB SRE low-speed

data rate is normally one per 10 seconds.

The USB System (References 1, 2, 4, 7, and 9) determines and records the spacecraft

range, range-rate, and antenna gimbal angle positions at the globally located tracking sites

listed in Table A-4 of Reference 8. The USB System transmits a continuous S-band car-

rier signal with a modulated pseudorandom code. The nominal uplink signal frequency of

2 gigahertz is multiplied by a constant (k = 240/221) at the coherent spacecraft transpon-

der and is retransmitted to the receiving stations.

The USB System range measurement is made by means of an autocorrelation involving a

pseudorandom code, which is modulated onto the S-band uplink carrier and coherently

turned around by the transponder. The locally generated code at the ground station under-

goes a variable delay when compared with the received code, which has undergone a

two-way propagation delay. When the inserted ground station delay equals the two-way

propagation delay, the autocorrelation has a maximum value and the inserted ground time

delay is a measure of the slant range.

With the long code or normal pseudorandom noise code, the USB range measurement is

unambiguous to a range of 958,000 kilometers. However, the range word readout size
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limits the maximum rangereadout to 644,000 kilometers. Normally, only one such range
acquisition is made over a single tracking station, and subsequentrange readouts are
obtained by updating the initial measurementby integrating a clock Doppler signal. That
is, once range acquisition is made, the ranging code is switchedoff and a clock modula-
tion is switched on. The relative phase change of the clock signal, as relayed via the

spacecraft, is then a measureof the range change.

As presently configured, the clock is not an integral submultiple of the carrier frequency;
however, the smallest increment of rangechange in the tracking format (termed the range
unit (RU)) correspondsto approximately 16 cycles of two-way carrier Doppler change.
Thus, wheneverthe vehiclemovesa radial distance of approximately 16 half-wavelengths
of the carrier frequency relative to the ground station, one RU is recorded. One RU

corresponds to 1.0496936 meters of range. The range update is done at the tracking site

and, from an equipment standpoint, is essentially independent of the carrier Doppler

tracking information which is also contained in the raw USB data format. Only the re-

ceiver radio frequency and intermediate frequency stages are common to the range and

range-rate channels.

The raw time tag associated with the range corresponds to the UTC ground receive time

and includes an onsite correction for the WWV propagation time delay. Typically, all USB

remote site clocks are synchronized to the U.S. Naval Observatory master clock to within

50 microseconds. The USB dish antennas employ an X-Y gimbal mounting system (see

Figure A-l). The 30-foot diameter antennas employ an X30 axis aligned north-south,

whereas the 85-foot antenna X85 axis is aligned east-west. The X axis is always con-

tained in the local tangent plane.

The basic measurement of the range rate in the USB System is that of carrier frequency

Doppler phase change. The downlink carrier from the spacecraft is coherently tracked by

a phase-locked ground receiver. The essential system functions are the following:

1. The uplink carrier has a nominal fixed frequency of 2 gigahertz derived from a

cesium clock source.

2. The transponder receiver onboard the spacecraft is phase-locked to the uplink

frequency plus the uplink Doppler shift.

3. The transponder transmitter frequency is coherently derived from the uplink

carrier plus uplink Doppler shift. A fixed frequency turnaround ratio of

240/221 is used for all USB tracking.

4. The ground receiver is phase-locked to the downlink signal, which is at the

transponder output frequency plus the downlink Doppler frequency shift.

5. In the two-way mode, a 1 megahertz signal is subtracted from the ground re-

ceiver signal prior to comparison with a signal that is coherent with the

A-11



transmitted carrier frequency. The basic output is then the Doppler frequency
plus a stable 1 megahertz bias.

The raw dataconsist of whole cyclecountsof the phasechange,which is a direct measure
of the spacecraft radial change relative to the station. The basic measurementN is a
nondestruct cycle count of the carrier phaseshift plus bias over a time period AtRR.It is
termed nondestructive since, although the counter is read out at even time intervals, the
accumulated count is not destroyed.Thus, the averagefrequency is obtained by differen-
cing the count in adjacent frames and dividing by the sample time.

The Doppler count, N, is resolved to 0.01 cycle through the implementation of the Time
Increment Resolver (TIR). Cycle resolving gives a precise measure of the time between
the start of the data interval and the time at which the last positive-directedzero crossing
of the biased Doppler signal is counted. This time duration is measuredby counting the
cyclesof a 100-megahertzoscillator. The Doppler count, along with the TIR count, will
appear in the samedata transmission frame. In the high-speedformat, the granularity of
the TIR is 10 nanoseconds; while in the low-speed format, the granularity is
40 nanoseconds.

The normal low-speeddata rates of the USB System are one frame per six seconds and

one frame per 10 seconds. The low-speed data are derived onsite from the high-speed

data, which are in a 240-bit format. High-speed data are simultaneously available at a rate

of 10 frames per second, 5 frames per second, or 2.5 frames per second, depending on

the operator selection at the onsite USB data processor. USB sites are capable of obtain-

ing gimbal angle and range-rate data without ranging, in contrast with the GRARR Sys-

tem, which always provides range data.

A.3.2 USB PREPROCESSING DESCRIPTION

The USB range data are transmitted from the sites in octal, with a granularity of

1.0496936 meters. The output of the data handler is the one-way range in kilometers with

no data corrections applied.

The N-count and TIR required to compute the range rate are transmitted in octal with a

granularity of 1 cycle and 40 nanoseconds, respectively. The one-way and three-way

Doppler data are converted to range rate in kilometers per second through the following

equations:

FOC = I N(t) - N*(tAtRR-AtRR)] 4 C(t)(10 -s) (A-11)

N'(t) = N(t) - FOC (A-12)
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_)g = [N'(t) - N'(tAtR_- AtRR)
(A-13)

where

FOC = fractions of a cycle

N(t) = contents of the Doppler counter at time t

N'(t) = Doppler counter at time t corrected by TIR

C(t) = contents of the TIR counter

AtRR = sample interval of the Doppler counter

0avg = average range rate

c = speed of light

K = transponder turnaround ratio (240/221 for USB)

Vx = transmitter frequency

The angular measurements are the X and Y gimbal angles, with the 85-foot sites having
A A

the X axis aligned east-west and the 30-foot sites having the X axis aligned north-south.

The data are transmitted in octal with a granularity of 6.8664 x 10 -4 degree. The data

handler outputs the angles in radians.

The time tag associated with all USB angle data is the ground receive time, corrected

onsite for WWV propagation delay.

A.4 MINITRACK SYSTEM (No Longer Operational)

The functional and preprocessing descriptions for the Minitrack System are given in the

following subsections.

A.4.1 FUNCTIONAL DESCRIPTION

The Minitrack System (References 1, 7, 10, and 11) is basically a radio direction finder

which utilizes the interferometer principle to locate a radiating transmitter carried by a

spacecraft. The Minitrack network is composed of seven stations, globally located as

listed below:

• Quito, Equador

• Santiago, Chile
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Winkfield, England
Johannesburg,SouthAfrica
Fairbanks, Alaska
Orroral Valley, Canberra, Australia
Tananarive, Malagasy Republic

Each system consists of a series of six horizontal baselines at each station, three oriented

east-west (EW) and three oriented north-south (NS), as shown in Figure A-3a. A fixed

antenna system is located at each end of each baseline to receive a nominal

136-megahertz signal transmitted continuously from a spacecraft as it passes within view

of each station. The spacecraft transmitter frequency can be preset to any of 2000 fre-

quencies between 136.000 and 137.999 megahertz in steps of 1 kilohertz. Each set of

three EW or NS baselines consists of a fine, medium, and coarse baseline. The fine

baselines are accurately surveyed to be 46 or 57 times the vacuum wavelength of the

nominal 136 megahertz signal. The medium and coarse baselines are 4.0 and 3.5 nomi-

nal wavelengths, respectively.

The principle underlying the Minitrack System is illustrated by the following simplified

two-dimensional case (see Figure A-3b). The spacecraft transmitter is assumed to be lo-

cated at an elevation angle a and at a very large distance from the station so that re-

ceived signals appear to be planar wavefronts, e.g., BC and B'C'. The baseline distance

AB is a multiple NB of the nominal 136 megahertz vacuum wavelength. At any given

instant, the phase of the signal along the propagation paths AC' and BB' is characterized

by the two sinusoids shown in Figure A-3b.

The separate signals received by the two antennas at A and B are fed into a phase counter

which measures the phase difference between the two signals, normalized to a fractional

part of the received signal wavelength, e.g., aF in the figure. This measurement gives no

information concerning the additional number of whole wavelengths that occur between

the signal received at antenna A and the signal received at antenna B. This ambiguous

integral number, as well as the fractional phase displacement itself, is dependent upon the

wavelength of the received signal, 2, the length of the baseline, NF, and the spacecraft

angular geometry, a. Thus, the reason for the multiplicity of parallel baselines (i.e., 46 or

57, 4- and 3.5-wavelength bases) is to resolve the integral cycle count ambiguity on the

longer (fine) baseline. This resolution is accomplished by synthesizing a 0.5-wavelength

measurement by differencing the 4.0- and 3.5-wavelength baseline phase difference meas-

urements, i.e.,

a_0.5 = a4.0 - a3.5 (A-14)

where a indicates the absolute phase difference.
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Figure A-3. Minitrack Baseline and Signal Reception Geometry
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It would be impractical to build a 0.5-wavelength baseline, since the antennas would
physically interfere with each other. The synthesized 0.5-wavelengthphase difference,
_ao.5,is unambiguoussince the extra path length, correspondingto AC in Figure A-3b, is

less than one wavelength. By similarity of triangles in the figure, the absolute length of

the path AC can be estimated from the 0.5-wavelength value as follows:

NF
= -- a0.5 (a-15)

0.5

where NF = 46 or 57

In practice, a0.5 is not precise enough to be used directly to obtain __. Therefore, a

slightly more complicated process is used to determine the unambiguous fine phase dif-

ference, a_F. Knowing a_F, the direction cosine is

AC a_F
COS a = - (A-16)

AB AB

For the three-dimensional case, the corresponding ratios obtained from the EW and

NS phase difference measurements yield the direction cosines t and m of the signal path
at the station.

Each fine baseline has its own phase difference counter; hence, two measurements (EW

and NS) are recorded simultaneously. The four ambiguity baselines (EW and NS, medium

and coarse baselines) share a single counter through a multiplexed digital recording sys-

tem. Since all measurements cannot be made simultaneously, the sequence of recordings

for each data frame occurs according to the schedule of Table A-2. These data can be

recorded at the rate of one frame every 1, 2, 10, 20, or 60 seconds. The fine baseline

counter registers a decimal number between 0.000 and 0.999, and the medium and coarse

baseline counter registers a decimal number from 0.00 to 0.99.

The frame rate is generally scheduled so that 31 frames give complete coverage of the

usable data for a spacecraft pass over a station. A message consisting of up to 31 frames

is punched on paper tape at the tracking station in standard Baudot five-level teletype

code and transmitted via teletype to GSFC for preprocessing.

A.4.2 PREPROCESSING DESCRIPTION

The Minitrack preprocessing procedures and interfaces are obtained from References 10

and 11 and have been revised to reflect subsequent modifications to the software. Fig-

ure A-4 summarizes the station/preprocessor/processor interfaces and provides an aid in

the following description.
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Table A-2. Minitrack Counter Sequence

TIME REGISTERED BY INITIATION OF BOTH INITIATION OF AMBIGUITY
MINITRACK DATA CLOCK FINE BASELINE COUNTERS COUNTER AND BASELINE SAMPLED

tF*

tF + 0.2 second

tF + 0.4 second

tF + 0.6 second

tF + o.a second

X

X

X

X

X

EW medium

EW coarse

NS medium

NS coarse

*tF = UTC at the beginning of the frame

At the Minitrack station, the fine, medium, and coarse phase difference measurements

are sampled and recorded in frames, as described in Section A.4.1. The time tag, tF, for

each frame is corrected at the station for the propagation delay of the WWV signal from

transmission to reception at the tracking station. Thus, tF corresponds to UTC time at the

beginning of each frame. Each frame of data is transmitted to GSFC in approximately

format A shown in Figure A-4 (the data signal) (strength indicators are omitted). These

data are then preprocessed by rectifying the shift in whole cycle counts between consecu-

tive fine, medium, and coarse phase difference measurements and then least-square fit-

ting low-order polynomials to the data. Electronic system filter delays are corrected in the

polynomial time variable, and calibration corrections are applied to the data.

The ambiguity correction for the fine phase data is determined from the medium and

coarse data. At each output time, a 0.5-wavelength baseline phase difference, a0.s,

is synthesized from the 4.0-wavelength baseline (medium) data, a4.o, and the

3.5-wavelength baseline (coarse) data, a3.s. The medium and coarse data are obtained

from the smoothing polynomial previously determined.

Because of its short baseline, the synthesized 0.5-wavelength baseline data is an absolute

(unambiguous) phase difference (the underscore denotes absolute phase difference).

Were it not for inaccuracies in ao.s, it could be used to determine the ambiguity correc-

tion for the fine data. To minimize the amplification of these measurement inaccuracies,

a0.s is used to correct the ambiguities in a3.5 and a4.o, which are then used to synthesize

a7.5, corresponding to a fictitious 7.5-wavelength baseline reading. Finally, aT.s is used to

correct the ambiguity in the 46- or 57-wavelength baseline fine data. This stepping proc-

ess is described mathematically in Section A.4.2.3.
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At each output time, the absolute fine phase difference data are corrected for antenna

field corrections and converted to direction cosines for use in subsequent processing. Data

at different output times from the same station are correlated by means of the smoothing

polynomials, which are used to replace the actual measurements.

The preprocessing steps summarized above are described in more detail in the following

subsections.

A.4.2.1 Data Linearization and Smoothing

As stated in Section A.4.1, up to 31 frames of data are recorded for each spacecraft pass

over a station. Each frame of data contains five fine, one medium, and one coarse

baseline phase-difference measurements from each east-west (EW) and north-south (NS)

baseline set. Thus, up to 155 fine, 31 medium, and 31 coarse baseline measurements are

recorded from each of the EW and NS baseline sets for each spacecraft/station pass.

The fine phase difference counters register only from 0.000 to 0.999. Therefore, it is

possible that the absolute value of the difference between consecutive readings can be

numerically larger than 0.500. This is assumed to mean that a new cycle crossing oc-

curred between measurements and that the measured data should be rectified by adding

or subtracting a full cycle count to one of the points. This process of rectifying the data by

converting to nonmodular number sets is called linearization.

A.4.2.1.1 Ambiguity Data

The ambiguity data (medium and coarse baselines) are linearized first since it is less

likely that the phase difference will exceed 4-0.50 between consecutive points with these

data. The linearization is accomplished as follows:

. Beginning with the first phase difference measurement, the difference between

consecutive points is calculated, i.e.,

¢_i -- ai+l - ai (A-17)

.

.

If (_i lies within the range -0.500 < 6i < 0.500, no rectification is necessary. If

6i -> 0.500, then integer multiples of 1.000 are subtracted from ai+l until hi

lies within the range -0.500 < (5_ < 0.500. If (5i - -0.500, then integer multi-

ples of 1.000 are added to aH until (5i lies within the range

-0.500 < h i < 0.500.

The index i is then updated and steps 1 and 2 are repeated until all phase

difference measurements have been rectified.
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This linearization process is applied separatelyto each of the EW and NS medium and
coarse baseline data sets. The componentsof the resulting data vectors, b-_wM,b-Nsu,
bEwc, and b-Nsc,have the correct relative phase, but the vectors may have an incorrect
absolute phase.

After linearizing the medium and coarsebaseline data, quadratic smoothing polynomials
are least-squaresfitted to each of the four data sets.The polynomials are of the form

bn = An + Bnl" + Cnl "2 (A-18a)

where

n = EWM, EWc, NSM, NS¢ (A-18b)

and r is the time measured from tFM, the frame time of the midframe (middle frame of

the data sets), i.e., r = t - tFM. When the polynomial coefficients are determined, the

ambiguity data are tagged at their frame times; thus, each of the polynomials is biased in

time by the multiplexer time delay. The multiplexer time delay is accounted for later

when the polynomial is evaluated. Ambiguity data exhibiting unusually large deviations

from the smoothing polynomials are rejected during the fitting process.

A.4.2.1.2 Fine Data

The linearization procedure for the fine baseline data is somewhat more complicated than

for the ambiguity data, since the phase change between data in successive frames can

exceed one cycle. Therefore, an approximation to the EW and NS data phase change is

estimated as follows, using the fine phase rate, a F •

(_i = ai+l - ai - aF(ti+l - ti) (A-19)

The fine phase rate is determined by averaging the ratioed slopes of the medium and

coarse smoothing polynomials at the middle frame time, tFM,

aF = 2 + (NF -- 46 or 57) (A-20)

The quantities Bc and BM are the coarse and medium phase rates from Equation (A-18)

at the middle frame time, i.e., r = 0.



The fine phase linearization is accomplished as described in Steps 1, 2, and 3 in the
preceding section but using the estimated difference given by Equation (A-19). The
componentsof the resulting data vectors, b_.wFand b-NsF,havethe correct relative phase,
but the vectors may have an incorrect absolutephase.

After linearizing the fine baseline data, their time tags, ts, are computedfor the appropri-
ate sequentialposition within each frame by accounting for sequencerdelay, Atp, and for
the counter delay in the phase readout digitizing equipment, Ate, as follows:

ts = tF + Atp + Ate (A-21a)

where

Atp = 0, 0.2, 0.4, 0.6, 0.8 (A-21b)

depending on the relative position of the data point within its frame (see Table A-2), and

Ate = 0.01 av (A-21c)

Cubic smoothing polynomials are then least-squares fitted to the linearized and time cor-

rected EW and NS fine baseline data. The polynomials are of the form

bm = Am + Bm Zm + Cm Z2m + Dm lr3m (m = EWF, NSF) (A-22)

where _:m is the time measured from the middle point of each data set. The NS and EW

midpoint times, tMm, can differ due to the correction Ate. Fine data exhibiting large

deviations from the smoothing polynomials are rejected during the fitting process.

A.4.2.2 Time Adjustment and Zenith Calibration

The four ambiguity polynomials and two fine baseline polynomials, in Equations (A-18)

and (A-22), are inconsistent in terms of their time variables. The ambiguity polynomials

neglect sequencer delay and use a reference time equal to the midframe time, tFM. The

fine polynomials use a reference time equal to the time of the midpoint, tMm, of each data

set. Neither of the polynomials accounts for the delays between the time the signal is

received at the antennas and the times the phase differences are sampled and tagged, nor

do they account for calibrations in the phase difference measurements.
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These discrepancies are accounted for by making the following corrections to the fine

baseline smoothing polynomials:

bm = [Am] + Bmrm + Cmr2m + Dmr3m (A-23)

where

e

Am = Am - Zm (A-24)

_m = t -- tm (A-25)

KFm

t_ = tMm + 1000 + KI - 0.4 (m = EWF, NSF) (A-26)

The correction terms are defined as follows:

KF m

KI

= zenith calibration constant that accounts for internal system changes

such as aging and maintenance of electronic components, phase shifts

caused by antennas and feed lines, and unequal lengths of cable con-
necting the antenna pairs

= delay of approximately 36 milliseconds caused by the fine filter

= delay of 0.120 second due to the optional 2-hertz bandwidth filter
when it is used

The 0.4-second delay in Equation (A-26) accounts for the difference between the time of

the middle point, tMm, and the midframe time, tFM. This term shifts the reference time of

the fine polynomials to that of the corrected midframe time. The notation [ ] denotes that

the integer part of the number is truncated, leaving only the fractional part. This trans-

forms the phase difference to the first ambiguity period at the reference time.

The ambiguity polynomials are corrected for sequencer and 2-hertz filter delay, their

reference times are made equal to those of the fine polynomials, and calibration correc-

tions are applied as shown in the following equations:

b_ = [An] + B= r + Ca r 2 (A-27)

A-22



where

A'_ = An + B_(tm - t_) + Cn(t_ - t_)2 - Zn (A-28)

_t

Z" = t-tm (A-29)

tn = tFM + Ata (h-30)

and

m = EWF for n = EWM or EWc

m = NSF for n -- NSM or NSc

The correction terms are defined as follows:

Zn

Atd =

same as Zm above

correction due to sequencer delay, plus a 0.15-second delay due to a

2-hertz bandwidth filter in the digital recording system,

-0.15 for EW medium

0.15 for EW coarse (A-31)
Atd = 0.25 for NS medium

0.45 for NS coarse

The first three terms on the right in Equation (A-28) account (approximately) for the shift

in reference time of the ambiguity polynomials.

A.4.2.3 Ambiguity Resolution

The time adjusted and calibrated smoothing polynomials provide the proper relative phase

difference (time variation). The phase difference magnitudes are reduced to the first am-

biguity period when the constant terms A'n (n = EWF, EWM, EWc, NSF, NSM, NSc) are

reduced to their fractional parts in Equations (A-23) and (A-27). Since the time variation

of the polynomials is proper, the coefficients Bn, Cn (and Dn for fine polynomials) are
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correct and only A'n needsto be altered to accommodatethe ambiguity resolution. Fur-
thermore, A'n = bn (_ = 0) = b_ is the smooth, time-corrected, and calibrated ambigu-

ous phase difference at approximately the midframe time.

The stepping process, summarized at the beginning of Section A.4.2 and described in

detail in References 10 and 11, is then performed to determine the absolute phase differ-

ences of the fine baseline polynomials. Throughout the following description, [ ] denotes

the fractional part only, and { } denotes the minimum phase difference, i.e., -0.500 <

{ ) < 0.500.

The absolute phase difference for a fictitious north-south and east-west 0.5-wavelength

baseline is determined from the medium (4.0-wavelength) and coarse (3.5-wavelength)

baseline relative phase differences b4.0 and b3.5 as follows:

b_o.5= {[b;.o - b;.5]} (A-32)

The absolute phase differences for the medium and coarse baselines are obtained as

follows:

r

b3.5 = 7 bo.5 (A-33)

r e

b3.5 = b3.5 - {[_b_3.5 - b3.5]} (A-34)

b'4.o = 8 bo.5 (A-35)

t r

b4.0= _b4.0- { 4.0 - b;.o]} (A-36)

The absolute phase difference for a fictitious 7.5-wavelength baseline is determined from

the absolute medium and coarse data b4.o and b_b_3.5,as follows:

b7.5 = b3.5 + b4.o (A-37)

Finally, the absolute phase difference for the fine baseline is determined from the abso-

lute 7.5-wavelength baseline data, as follows:

(A-38)
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b_b_F= b_ - {[b_b__- b_,]} (A-39)

The above process is performed for both EW and NS baseline data. The resulting EW and

NS fine baseline absolute phase difference polynomials are

b__m(Z) = b_.m(Z" = 0) + Bm I: + Cm 1:2 + Dm z"3 (m = EWF, NSF) (A-40)

where

= t - tm (m = EWF, NSF) (A-41)

A.4.2.4 Antenna Field Correction

The calibration Zn given in Equation (A-28) is determined as an average over the usable

antenna field. There are distortions in the field patterns, however, and they are corrected

by the following calibration polynomials operating on the corrected absolute phase differ-

ences, b_NsF and b_EWF, obtained from Equation (A-40). These corrections are of the form

[c,c,,1[ wF1+[Cl.C1. [ wF1C,oC, j  s,J c,,c,,j  s,J
(A-42)

+
sin (2_r b_EWF)]

sin (23r b_NSF)J
[C21 C23] [cos (2zt b__EWF)]+ kCOS(2_rb_NsF)J

where the coefficients Ci are obtained by field calibration.

A.4.2.5 Conversion to Direction Cosines

The direction cosines t' and m' of the corrected phase differences are determined from

the corrected absolute fine baseline phase differences by dividing by the distance between

the fine antennas, expressed in wavelengths of the received signal. The fine antennas are

positioned to be Nv (46 or 57) times the nominal 136.000 megahertz vacuum wavelength.
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For transmitted signal frequencies, V.r, the baseline length in terms of the transmitted

frequency is (NF VT/136.000). Therefore, the direction cosine of the received signal from

the station centered local tangent east-pointing axes is

136.000"] (A-43)

and the direction cosine to the local tangent north-pointing axis is

(136.000_ (A-44)

A.4.2.6 Processor Considerations

Several aspects of the preprocessing procedure influence the accuracy and use of direc-

tion cosine data in subsequent orbit determination processing. First, the sampled data are

approximated by a cubic polynomial which is used to determine the direction cosines. The

cubic polynomial can introduce time-correlated errors into multiple direction cosine pairs

obtained from the same station pass. Therefore, the variance of the residuals between the

cubic polynomial and the data should be scrutinized, and consideration should be given to

limiting the direction cosine data to one pair per station pass. Second, the received signal

frequency in Equations (A-43) and (A-44) neglects the downlink Doppler shift and as-

sumes that the transmitted and received signal frequencies are the same (i.e., vR = VT).

Finally, the direction cosines g' and m' correspond to vacuum signal paths. Thus, atmos-

pheric refraction corrections and light-time delays must be applied in the processor.

A.5 VERY LONG BASELINE INTERFEROMETER (VLBI)

(Not Currently Available in GTDS)

As in the Minitrack System, the VLBI System measures the phase differences at two or

more ground stations when they simultaneously receive the same radio signal. However,

in the VLBI system each terminal is controlled by its own independent frequency standard

so that there is no necessity to use cable or microwave links to preserve the phase coher-

ence among these stations. This permits the stations to be separated by arbitrarily large

distances, typically on the order of thousands of kilometers. Since the angular resolution

of any interferometer is directly proportional to the length of the baseline, the VLBI con-

cept permits the position of the radio source (e.g., satellite) to be determined to a much

greater degree of accuracy than is possible with a short baseline system like Minitrack.
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The principle underlying the VLBI concept is illustrated by the simplified two-dimensional
geometry shown in Figure A-5. The figure shows a signal, characterized as a planar

wavefront, being simultaneously received at stations A and B, which are separated by

distance D. The phase difference, A_, between the two received signals is related to the

separation of the stations D as follows:

A_ = (_---) cos 0 (A-45)

where 0 is the source direction and 2 is the signal wavelength. When the value of 0 is

such that A_ is an integral number of half-cycles, i.e., 0 = cos -1 (n ,_/2D) where n is an

integer, the signals received at each terminal are in phase or antiphase, and a relative

extremum of power is available from the interferometer.

Figure A-5. Simplified Schematic of VLBI

As the source transits the interferometer, a power (or intensity) response such as that

shown in Figure A-6 is produced. The abscissa is time, which is related monotonically to

the source direction, 0. If the time at which a specific fringe is produced can be deter-

mined precisely enough, the relationship for A_ in Equation (A-45) can be equally pre-

cisely specified in terms of source position and baseline parameters. The fringe density is

so great, however, that it is very difficult to identify the central fringe (the fringe pro-

duced when the source direction is perpendicular to the baseline) and hence very difficult

to record accurately the time of passage through any nth-order fringe (i.e., the fringe

displaced from the central one by n cycles).
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Figure A-6. Interferometer Fringes

The fringe number ambiguity is resolved by recording the received signal onto magnetic

tape at as high a bandwidth as possible. These recorded signals are clipped and sampled

so that the information is preserved in digital format. Corrections to compensate for the

clipping and sampling are applied during preprocessing. Pairs of tapes, one from each

station, are crosscorrelated afterwards in a preprocessing program. The correlations are

repeated for many trial combinations of relative delay offset and delay-rate offset between

the two records. When both digital records are correctly aligned, all of the frequencies

within the signal bandwidth will have the same phase, and at this point the superposition

of all the harmonic components within the complex correlation function will produce a

maximum in its amplitude, as well as in the amplitude of its power spectrum. The delay

and delay-rate values that produce this maximum are recorded, and the series of such

values form the measurements.

A.6 RADAR ALTIMETER (Not Currently Available in GTDS)

A satellite is assumed to be in a near-Earth orbit, and its attitude is assumed to be stabi-

lized so that the axis _i of an attached pointing instrument is directed along the local

vertical or gravity gradient. This can be accomplished by gravity gradient stabilization or

other attitude stabilization techniques. Such stabilization allows the use of a directional

antenna, pointed along the _-i axis, for the radar altimeter. The transmitter onboard the

satellite transmits X-band signal pulses, which form a series of spherical wavefronts di-

rected towards the Earth. The antenna beamwidth results in a signal cone with its apex at

the transmitter and an axis that coincides approximately with the _ axis of the satellite,

as shown in Figure A-7.

As the wavefront of each pulse intersects the sea surface, it is reflected back towards the

satellite. The time difference between the time of transmission and the time of recel_tion

of the radar pulse is a measure of the height of the satellite above the local surface. If the

beamwidth of the transmitted signal is larger than the nominal spacecraft libration in

attitude about the local vertical, the first return signal will lie on the transmission path

normal to the sea surface and through the satellite. The effective size of the illuminated
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spot on the surface is determined by the transmitted pulsewidth, the beamwidth, and the
type of return pulse detection utilized. As long as the local vertical from the surface to the
satellite lies inside the antennabeamwidth cone, the altimeter measurementwill represent
the shortest distancebetween the satellite and the seasurface.

Figure A-7. Radar Altimeter Cone

The satellite timing equipment provides signals for measuring the time interval between

the transmitted and received signals and for time tagging discrete measurements. This

timing equipment is periodically calibrated from ground stations.

Initial preprocessing of the altimetry data consists of applying calibration and ambiguity

corrections to the two-way time difference between transmitted and received signals and

converting the result to an altitude by multiplying by one-half the speed of light. The time

tag is calibrated and corrected to the midinterval time (i.e., the time that the signal is

reflected from the sea surface). After these preprocessing computations, each data ele-

ment is treated as if it were an instantaneous measurement at the midinterval time.

A.7 STDN LASER SYSTEMS

The STDN laser trackers provide highly accurate range measurements to spacecraft

equipped with optical retroreflectors. Range measurements are determined using the

propagation time of a laser pulse from the tracker to the spacecraft and back. Corrections

for internal system delays and refraction are made on site. Ranging can be performed
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during both night and day up to distances of several thousand kilometers; however, at-
mospheric conditions must be favorable.

Angle data are also provided by the laser trackers. However, the laser telescopeshaveno
autotrack; the laser pointing direction is computer driven according to a priori orbit infor-
mation. Thus, the angle measurement is only as accurate as the laser beamwidth. The
lasers have a half-beamwidth of between0.006 and 0.009 degree, and the receiving tele-
scopeshave a half-beamwidth of approximately 0.015 degree.

The STDN laser data rate is one per second.However, the quick-look (QL) data have a
sampling rate of approximately 20 to 50 randomly spacedvalues per pass.

In the QL laser system, the range to a spacecraft or a fixed target is measuredby deter-
mining the elapsed time between transmission and reception of a short pulse of intense
light. The laser firing is initiated by a one-pulse-per-secondsignal from the time standard.
A sample of the transmitted pulse is fed to a photodiode, which starts the range time
interval unit (TIU). Similarly, a pulse from the photomultiplier receiver, which recognizes
the return pulse from the target, stops the range TIU. The indication of the TIU is multi-

plied by the speed of light to determine the range.

With a transmitted pulse on the order of 20 nanoseconds (600 centimeters long), this

system is capable of measuring range to an accuracy of approximately 50 to 100 centime-

ters, because the times of starting and stopping the TIU are dependent upon the height of

the laser pulses. System performance is improved by measuring the time of occurrence of

the centroid of the transmitted and received pulses and by means of a pulsewidth dis-

criminator and waveform digitizer. When corrections for the time of occurrence of the

centroid are applied to the basic range, accuracy of the measurement system is improved
to better than 10 centimeters.

The instrumentation developed to perform the laser ranging experiment comprises three

major subsystems: tracking pedestal and receiver optics, laser transmitter, and ranging

and data control systems. These systems are interconnected to form a digitally controlled

optical radar system capable of tracking cooperative spacecraft equipped with retro-

reflector arrays to within the accuracy of orbit predictions.

A.8 TRACKING AND DATA RELAY SATELLITE SYSTEM (TDRSS)

The functional and processing descriptions for the Tracking and Data Relay Satellite Sys-

tem (TDRSS) are given in the following subsections.

A.8.1 TDRSS FUNCTIONAL DESCRIPTION

TDRSS is a network of geosynchronous relay satellites and a common ground terminal

used by NASA for tracking and communications support of low-Earth satellites. TDRSS
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comprisestwo operational satellites and one in-orbit spare.The two operational satellites,
TDRS-Eastat 41 degreeswest longitude and TDRS-Westat 171 degreeswest longitude,
are centered about the White Sands Ground Terminal (WSGT) and provide 85-to
100-percentvisibility coveragefor user spacecraft (Figure A-8).
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Figure A-8. TDRSS Configuration and Coverage Limits

The Bilateration Ranging Transponder System (BRTS) is used to provide range and

Doppler measurements for TDRS. BRTS is a system of four ground-based, unmanned

facilities, located at WSGT, Ascension Island, Alice Springs (Australia), and American
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Samoa, that contain a total of six transponders similar to those flown on user spacecraft.

Since the positions of the BRTS transponders are accurately known, their ranging infor-

mation is used to determine precisely the trajectories of the TDRSs.

Each Tracking and Data Relay Satellite (TDRS) is equipped with two user service antenna

systems. The high-gain system comprises two steerable 5-meter dual S/K-band antennas,

known as the Single Access (SA) System (SSA and KSA for S-band and K-band, respec-

tively). The low-gain system consists of a 30-element S-band phased array antenna sys-

tem, which can provide one forward link and multiple simultaneous pseudorandom noise

(PN) code division multiplexed return links. This is known as the Multiple Access (MA)

System.

WSGT is configured with three 18-meter K-band elevation-over-azimuth (AZ-EL) anten-

nas; a 6-meter S-band AZ-EL tracking, telemetry, and command (Tr&C) antenna; and

roof-mounted S-band and K-band simulation/verification antennas. The communications

equipment at WSGT can simultaneously support two-way communications for six SSA,

six KSA, and three MA services, as well as a total of 20 MA return links.

User tracking equipment can provide nine ranging and 19 Doppler services simultane-

ously (Figure A-9). The Doppler measurement is a continuous count of a bias plus the

Doppler frequency resolved to 0.001 cycle at S-band and to 0.01 cycle at K-band. The

range measurement is the four-leg round-trip light time resolved to 1 nanosecond. This

range measurement is ambiguous in multiples of the ranging code period, about

0.086 second (13,000 kilometers one way). The measurements are strobed on the whole

second, formatted, and transmitted to NASA at selectable sample rates of 1, 5, 10, 60,

and 300 seconds.

BRTS (Figure A-10) is used to provide tracking measurements for the relay spacecraft.

The BRTS four ground-based unmanned facilities contain transponders similar to those

flown on user spacecraft. BRTS provides a set of transponders whose position are accu-

rately known so that ranging information can be used to determine the trajectories of the

TDRSs with a high degree of precision. The facilities are located at WSGT (two transpon-

ders, three antennas), Ascension Island (two transponders, two antennas), American

Samoa (one transponder, two antennas), and Alice Springs, Australia (one transponder,

one antenna). TDRS-East (TDRS-E) and TDRS-Spare (TDRS-S) will be supported by

BRTS at White Sands and Ascension Island, while TDRS-West (TDRS-W) will be sup-

ported by BRTS at Alice Springs, American Samoa, and White Sands.

A detailed functional description of the TDRSS network is available in Reference 12.
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Figure A-9. Closed-Loop Tracking Configuration

A.8.2 TDRSS RANGE AND DOPPLER/DIFFERENCED DOPPLER

MEASUREMENT PROCESSING

Descriptions of the TDRSS range measurement processing and the Doppler and dif-

ferenced Doppler measurement processing are given in the following subsections.

A.8.2.1 Range Measurement Processing

The TDRSS range measurement is obtained by measuring the time delay required for a

reference time marker (PN code start time determined by autocorrelation of the received

PN code with the locally generated PN code) to travel from the White Sands ground

tracking station to the TDRS, from the TDRS to the target and back to the same TDRS or
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Figure A-10. Bilateration Ranging Transponder System (BRTS) Configuration

to a different TDRS, and to return to the ground station. This time delay measurement

has an ambiguity, equal to the integral number of the PN code periods, that must be

resolved by the orbit determination process. The algorithm used for processing the range

measurements is discussed below.

Raw Data Reduction Algorithm for Range Measurement

The raw data, which are a measure of the signal traveling time, are converted to kilome-

ters. The raw measurement obtained at the ground terminal is a count of the number of

chips between the reference and received PN code at a time tag T. This count is converted

to a time delay and half-range by the following equations (Reference 13):

At(T) = N x 2 -8 x 10 -9 seconds (A-46)

Qo(T) 1= -- x c × At(T)kilometers (A-47)
2
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where

At

N

oo(T) =

C

measured round-trip time delay (in seconds) at time tag T between

corresponding chips of the reference and received PN code

total number of counts (in units of 2 -8 nanoseconds)

measured half-range at time tag T (in kilometers)

speed of light

The time delay measurement, At, given in Equation (A-46) has an ambiguity equal to an

integral number of the PN code period. This ambiguity is to be resolved (see Sec-

tion 7.3.2.3). The range measurement that results from the processing is the half-range of

a round trip, since a factor of one-half appears in Equation (A-47). To be consistent, this

factor must be included when the range measurement is modeled.

A.8.2.2 Doppler and Differenced Doppler Measurement Processing

Doppler measurements in TDRSS include hybrid, two-way, one-way, and differenced one-

way measurements. The raw data measurement consists of a nondestruct Doppler count

of a nominal bias frequency, 240 megahertz, over a fixed time interval. The count is

cumulative since the counter is not reset to zero between measurements.

A hybrid or a two-way Doppler measurement is performed by transmitting a signal at

K-band frequency from a ground transmitting station to a forward-link TDRS. The TDRS

coherently translates the signal to the tracking frequency of the user spacecraft in S-band

or K-band and transmits it to the user spacecraft. The user coherently turns the signal

around at a ratio of either 240/221 for S-band frequency or 1600/1469 for K-band fre-

quency and retransmits it to the return-link TDRS. The TDRS then translates the signal to

K-band frequency and transmits it down to the ground receive station.

The one-way Doppler measurement can be generated from either spacecraft or ground

transmitters. Any 10 of the 20 MA service antennas of the TDRS can be used

simultaneously for one-way Doppler measurements. Although the individual one-way

Doppler measurements are dominated by oscillator frequency bias, given a wide-beam

antenna system on the autonomous spacecraft, the signal can be received by all three

TDRSs with the same frequency bias being measured in each measurement. In differen-

cing the measurements, this bias can be canceled out, thus offering tracking of a space-

craft as accurate as that provided by two-way measurements.

The algorithms used to reduce raw measurements are discussed separately in the follow-

ing subsections for the Doppler and differenced Doppler measurements.
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A.8.2.2.1 Raw Data Reduction Algorithm for Doppler Measurements

In any batch of TDRSS data, the first Doppler measurement of the batch is always invalid

because the counter for the Doppler count is not initialized to zero for nondestruct

Doppler measurements. Therefore, the first Doppler measurement of a batch is set to

zero. The following algorithm is used to preprocess all TDRSS Doppler raw measure-

ments, except differenced one-way Doppler measurements:

Vd0(Ti) -- 0 (for i = 1)

1

: L
r
N - T-777-,)

N|-I)
(for i > 1)

(A-48)

where

v.0(%)

Ni, Ni-1

L

Vb

-- measured Doppler shift (in hertz) at time tag Ti, averaged over

thetime interval between Ti and Ti-1

= Doppler counter readings (in counts) associated with time tags T1

and Tt-1, respectively

= 1000 for SSA service and MA service and 100 for K-band service

= bias frequency = 240 megahertz

A.8.2.2.2 Raw Data Reduction Algorithm for Differenced Doppler Measurements

The differenced one-way Doppler measurements are created only when there are two or

more batches of one-way Doppler measurements from the same target within the same

period of time.

While raw TDRSS data are being processed, pertinent information is stored in an internal

table for all one-way Doppler batches that are encountered. After all the raw data have

been reduced to 60-byte output format, the table is searched in generating differenced

one-way Doppler measurements. The objective is to look for a pair of matching one-way

Doppler batches for the same target with overlapping timespans. If an identical time tag is

found in the pair, the difference of the already reduced one-way Doppler measurements is

computed using the following equation:

AlPd0(T ) = [Vd0(T)]eompar e - [l,'d0(T)]referenc e (A-49)
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"-- where

AVdo(T) =

[AVdo (T)] compare =

measured differenced one-way Doppler measurement at

time tag T

reference one-way Doppler measurement

comparison one-way Doppler measurement

When this pair of matched one-way Doppler measurements corresponds to two different

return-link TDRS spacecraft, the measurement associated with the lower TDRS number is

regarded as the reference. However, if they correspond to the same TDRS spacecraft but

have two different access service-link identifications, the measurement encountered first

is considered to be the reference (Reference 13). This difference, along with other perti-

nent information (e.g., time tag, user spacecraft identifier (ID), TDRS ID, and flags), is

used for orbit determination.
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APPENDIX B--TIME ELEMENTS

The Time-Regularized Cowell system of equations achieves analytic stepsize control

through the transformation of the independent variable, time, to a new variable s defined

by

dt ra (B-l)
ds

where a is called the uniformization constant and r is the magnitude of the radius vector.

The physical time, t, is obtained through the integration of Equation (B-l); Which involves

r. Any linear error in r will propagate into a nearly quadratic error in the time. Time

elements are introduced to reduce this nearly quadratic error growth to a nearly linear

error growth for perturbed motion. An element in two-body motion is defined as a pa-

rameter that is either constant or a linear function of the independent variable.

For perturbed motion (assuming small perturbations), an element varies slowly from the

two-body solution. Thus, in deriving a time element r for the Time-Regularized Cowell

method, r is required to vary linearly with the independent variable s, i.e.,

dr (B-2)----- C
ds

where c is a constant; it is also required that r be related analytically to the physical

time, t. This is done via Kepler's Equation

1
t = to + -- (E - e sin E) (B-3)

n

which can be rewritten with the introduction of r as

t=to+Z
1

g(a) + _ (E- e sin E) (B-4)
n n

where, by definition,

r- g(a) (B-5)
n

and g(a) is a function relating r to the Kepler element a.
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Differentiating Equation 03-5) with respect to s and substituting Equations (B-l) and
(B-2) yields

dg r-a-- = n c (B-6)
dt

B.1 UNPERTURBED MOTION

The definition of the function g is obtained for various values of a by utilizing known

integrals of the two-body problem.

B.I.1 TIME ELEMENT CORRESPONDING TO THE ECCENTRIC ANOMALY

(a = 1)

In Keplerian motion, the time derivative of the eccentric anomaly, E, is given by

dE
= n a r -1 (B-7)

dt

where the mean motion, n, and the semimajor axis, a, are constants for two-body motion.

Comparing Equations (B-6) and (B-7) for a = 1 yields

g = E (B-8)

and

c = a (B-9)

Thus,

dr 1 dE
- r = a (B-10)

ds n dt

and, from Equation (B-4),

e sin E
t = to + lr (B-11)

n

which is the desired result for two-body motion.
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B.1.2 TIME ELEMENT CORRESPONDING TO THE TRUE ANOMALY (a ffi 2)

The time derivative of the true anomaly, f, is given by

df = _/_ P r_ 2 (B-12)
dt

where the semilatus rectum, p, is a constant of the motion for the Kepler problem.

Comparing Equation (B-6) and Equation (B-12) yields

g = f (B-13)

and

Thus,

C

4C_P (B-14)

n

dr _ 1 df r2 _ ]#-p (B-15)
ds n dt n

which is the desired differential equation for r. Kepler's equation, Equation (B-4), can

then be written as

f 1
t = to + r- -- + -- (E- e sinE)

n n

= to+l'-
(f - E) e sin E

n n

(B-16)

B.2 PERTURBED MOTION

The extension of the time element equation for perturbed motion is presented for a

and a = 2, using the approach followed in References 1 and 2.

=1
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B.2.1 TIME ELEMENT EQUATION CORRESPONDING TO THE KS

FORMULATION (a - 1)

Equation 00-11) can be written as

r = t + (f" r) 00-17)

2hK

where hK is the negative Keplerian energy

hK = /_ v2 (B-1 8)
r 2

Differentiating Equation 00-17) with respect to the new independent variable, s, yields

dz dt ['(t- • _) (r r) f • r _ dt
d--s = d--s + -L 21aK + 2hr 2h_ laKj as (B-19)

This expression simplifies to

r(f • P) r(f • r)(r P) 00-20)dr = /_ + +
ds 2hK 2hK 2h_

where P is the perturbing acceleration, i.e.,

_:= -/_f _
r3 + P 00-21)

The differential equation for the time element in Equation (B-20) clearly has the desired

properties in that the element varies linearly with respect to the independent variable, s,

for unperturbed motion (_-- 0), and for perturbed motion (providing _ is small) the

element varies slowly from the two-body solution. An alternative expression involving the

total energy

h = hK- V 00-22)
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where V is the perturbing potential, can be derived by beginning with the expression

l'=t+
(r. r) 03-23)

2h

Differentiating this equation with respect to the independent variable, s, yields

dr 1 r (t- • r) la (B-24)
d--s _ 2h _- 2rV- r(t • VV) + r(g • P)] 2h 2

where W is the perturbing acceleration due to the perturbing potential function, i.e.,

_- v +g-w 03-25)
r 3

Equation 03-24) can be shown to be the time element equation corresponding to the KS

formulation (Equation (5-10a)) by noting that

d 2to d 03.26)
ds dE

and

to = _ (B-27)

The comparison between Equations 03-20) and the KS equation, Equation 03-24), has

been made in Reference 2, and it was found that they give the same amount of accuracy

improvement for the tested cases.

B.2.2 TIME ELEMENT EQUATION CORRESPONDING TO THE DS

FORMULATION (a = 2)

Equation 03-17) can be written as

lr = t+
(t- • r) ,u (f - E) 03-28)

+
2hK (2hK) 3/2
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Differentiating Equation (B-28) with respect to the new independent variable s yields

dr dt r 2 r2 (t- • r)

ds = ds * _ 16- r) ÷ (_" _)] 2h[ h_

/_ r 2 3/_ r 2 (f - E)

+ (2_7_/_ (f - fi)- flK(2hK) 5/2

(B-29)

This expression simplifies to

r2 r2
dr /_ f_ P + p) +
d---s = (2hK) 3/2 _-h--_K(ff " 2---_K(r-" r)(r P)

3H r 2

+ (2hr)5/2 (f - E)(r P) + /z r2 [ 0(__) - O(__) PI(2hK)3/2 " p- •

(B-3o)

Noting that the leading term in this equation is a constant and all other terms are a

function of the perturbations, it is clear that this differential equation for r has the

desired properties noted previously.

The differential equation for the time element g in the DS formulation (see Equa-

tions (5-45), (5-46), and Reference 3) is given by

dg /_ r( Or r 0q'_ r2 0V

d---s = (2L) 3/2 + V--q _.2 Ofl4 q Off4) + q OL P4 (B-31)

where L, the total energy, is one of the elements of the formulation, and s, the independ-

ent variable, is the true anomaly. Transforming the independent variable of Equa-

tion (B-30) to the true anomaly using the operator

d d
-- = (G - O)- (B-32)
ds df

(where G is the total angular momentum and _ is the perturbing energy), and letting Q1

represent all terms dependent upon perturbations, yields

dr /t
m

df (2hK) 3/2
+ O2 (B-33)
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If Q2 represents those terms in Equation (B-31) that are dependent upon perturbations,

the following equation results:

dt #
+ Q2 (B-34)

ds- (2L) 3/2

As in the case where a = 1, the leading term in Equation (B-33) is a function of the

Keplerian energy, hK, whereas the leading term in Equation (B-34) is a function of the

total energy, L. This can lead to accuracy improvements for conservative perturbed mo-

tion situations, although at present no comparison studies have been performed.
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APPENDIX C--DEVELOPMENT OF RANGE-RATE
FORMULAS

This appendix presents the development of formulas that relate the tracker and spacecraft

relative motion to the Doppler shift in an electromagnetic signal transmitted from one to

the other. For a further definition of the mathematical symbols used, refer to Appen-

dix A.

The general relativistic expression relating the frequencies of an electromagnetic signal

propagation from a transmitter to a receiver is

Vrvt arat [1- Frnr"Ftfit _] (C-l)

where

F

a = goo + C goi + -_" gij _i_j

i=l i,j=l

c g00

(c-2)

. dx i dx j dx (C-3)

(go1 goj - goo gij)-d- _ dS . = goi-_

and

t, r

Vt, l"r

•__ •
rt, rr

gu

X i

= subscripts indicating that the designated quantities are evaluated at

the transmitter and receiver, respectively

= frequencies of the transmitted and received signals

= velocities of the transmitter and receiver, defined as the derivatives

of their inertial positions with respect to the coordinate time "t

_- elements of the metric matrix defining the nature of the space-time

frame

= components of the space coordinates
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S

A A

nt _ nr --

C

arc length along the propagation path

unit vectors along,the local propagation path at the transmitter and

receiver, respectively

wave propagation speed

The derivatives dxi/dS are simply the direction cosines of the propagation path, and thus
A

are the components of the local unit vector, n.

Equation (C-1) is derived under the assumption that the metric elements gij vary slowly

in time compared with the wave propagation speed, c. This is a good approximation since

the variations of the gij elements are due to planetary motions, which are very slow

compared with c.

In principle, the gu should mathematically describe everything that physically affects the

propagation of electromagnetic waves in their region of definition, including gravitational

influences, the refractive effects of the atmosphere, and any other significant influences.

If such a rigorous mathematical description of the space-time frame could be formulated

and then solved analytically, propagation paths for specific cases could be computed very

accurately as geodesics. However, no such completely general treatment of the problem

has yet been produced.

It is generally assumed that the metric coefficients for the case of special relativity are

go0 : 1 (C-4a)

gii = -1 (i, j : 1, 2, 3) (C-4b)

gij : 0 (i _j) (i, j : 1, 2, 3) (C-4c)

Equation (C-2) then becomes

. •

a = 1 r r (C-5)
C 2
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and Equation (C-3) simplifies to

F= --1 (C-6)
C

The propagation path, which is the straight relative position vector from t-, to fr, is given

by

A A A rr - rt (C-7)
n, = n r = n - r,l

Under the preceding conditions, Equation (C-l) reduces to

1 r_ rt
C2

Vr

Vt rr rr

C 2

A

n rr
1-

C

A

n rt
1

C

(c-8)

which is the formula from special relativity for the one-way Doppler frequency shift.

The metric coefficients in Equation (C-4) describe straight-line propagation in a vacuum.

The neglect of the ray path bending due to gravitational effects is an acceptable approxi-

mation, considering the precision of the radar Doppler measuring equipment. However,

the refractive bending of the ray by the atmosphere (troposphere and ionosphere) is not

negligible and must be taken into account. The special relativistic formula given by Equa-

tion (C-8) is modified to replace the unit vector _a along the idealized straight ray path

with the unit vectors

^ A (C-9a)n t = n + APat

^ A A (C-9b)n r = n + An r
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along the actual curved propagation path. The method by which the refraction difference
vectors, A_at and A_r, are estimated is discussedin Chapter 7. Here the terms will sim-
ply be introduced into the equations and formally carried through the derivations. As a
result of this substitution, Equation (C-8) becomes

I] r
m

Vt

rt rt

C2

rr rr

C 2

m

A

1 n_ fr
C

A

1 nt fit
e

where _a_ and _at are given by Equations (C-9).

The geometry of two-way (or three-way) signal propagation is illustrated in Figure C-1. A

continuous wave signal of frequency VT is emitted by a ground station at position fT at

time tT. At a later time tv, the spacecraft at position t-v receives this signal along the

curved uplink transmission path. Application of Equation (C-10) gives the relationship

/_t"v _ SPACECRAFT ORBIT

Figure C-1. Signal Propagation Geometry
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between the apparent signal frequency at the ground transmitter, lPT, and at the space-

craft receiver, vv, i.e.,

1 rT rT
C2

Itv

1 c2

m

A
Uv rv

1
C

A

1 UT rT
C

(c-11)

where

UT = U +A T

^ ^
u v = u + A_ v (C-12)

^ t-_ - t-T
U -

and the subscript T refers to quantities evaluated at the ground transmitter.

Although it is not rigorously correct to do so, the spacecraft USB transponder can be

modeled as though it coherently turns the received signal around and retransmits it at the

received frequency, vv. ° The downlink signal is received by the ground station (either the

same station that transmitted the uplink signal or an entirely different station whose oscil-

lator is coherently linked with the transmitter) at position fR at time tR. The one-way

frequency shift that occurs on the curved downlink path is

._ "__

1 rv rv

c 2
VR

_'v - --
rR rR

C 2

w

A ,_

1 dR rR

A °

dv r,
1-

C

(C-13)

*The USB uplink frequency capability is 2025 to 2120 megahertz, and the downlink frequency capability
is 2200 to 2300 megahertz.
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where

A A A

dv = d + Adv

A A A

dR-- d + AdR (C-14)

A FR-F_
d =

Ir -ml

The relationship between the transmitted and received ground frequencies for this two- or

three-way case is computed by multiplying Equations (C-11) and (C-13) together to obtain

A "_
Uv1+ rr__ __rr r,

c 2
V___R.R= _ __ C

VT rR rR _lr r'-r

+ _ c
m

m

A
.4

rR1 - us
C

A ._

1 dv r,
c

m

(C-15)

The frequencies va and VT are defined with respect to the tracking station oscillator. In

the language of relativity theory, this clock measures the proper time associated with the

inertially moving tracking station. The velocities, on the other hand, are all defined in

terms of derivatives with respect to coordinate time, the time system associated with the

inertial reference frame. This time can be regarded as the same as uniform time for the

present development.

If Equations (C-12) and (C-14) are substituted into Equation (C-15), and the factors

within the brackets are expanded in terms of no higher order than A_a (r/c) or
A

Ad (r/c), the following form results:

VR _ __

g=
+ 7

m

A

u fv 1
C

A

U ?T 1

C

A

d
C

Ad
C

+
c

(C-16a)
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_-- where

^ - ^ " ^ - (C-16b)
AQ = A_IT " rT + Ad, " r, - Auv • t-, - Adg • rR

The first term within the braces (the product of the expressions, in brackets) represents

the vacuum portion of the Doppler shift. The additional term, AP/c, involving the propa-

gation path unit vector deflections, represents the refraction effects. Equation (C-16)

relates the received frequency to the transmitted frequency via the geometry of the round-

trip light path.

The continuously transmitted signal is beat against the received signal, resulting in a

signal with a frequency equal to the difference between the two, i.e.,

vd = VR - VT = VT 1 (C-17)

A fixed frequency bias signal, vb, is added to this Doppler signal, and the combination is

fed to a Doppler-plus-bias cycle counter. Simultaneously, a reference frequency, VR2, is

fed to a separate time interval counter. At most tracking stations, the bias and reference

frequencies are coherently derived from the same source as vT.

The measurement is mechanized in one of two ways, a destruct or a nondestruct count.

The destruct count mode (employed in the GRARR and ATSR systems) counts a pre-

assigned fixed number of cycles, N, of the Doppler-plus-bias signal and records the meas-

urement as the (variable) number of cycles, Co, of the reference frequency required to

accumulate the simultaneous N cycle count. The nondestruct mode (employed in the USB

System) continually accumulates the count of the Doppler-plus-bias signal in its counter.

The measurement consists of recording this continually increasing number whenever a

preassigned fixed number of reference frequency cycles has been accumulated. Differ-

ences between the recorded values at different sample times gives the number N of the

Doppler-plus-bias count over the reference time interval.
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Using either technique, the measurement results in a count of some number N of

Doppler-plus-bias cycles over a period of time

Co
Atga = (C-18)

vR2

This measurement count can be modeled mathematically by the equation

_"t+AtRR

N = | (vd + Vb)dtR (C-19)
Jt

If the measurement is made in the destruct mode, the integration time interval, Atal_,

should be varied until the computed value of N exactly matches the fixed cycle count

number. In the nondestruct mode, AtRR is fixed and N, in general, will be some whole

number of cycles plus a fractional part. This fractional part should be truncated to simu-

late more rigorously the actual accumulation of whole cycles.

The integration variable, tR, in Equation (C-19) is the receiving station clock time, or

proper time. The significance of this point will become evident during the evaluation of

the integral.

Substitution of Equation (C-17) into Equation (C-19) yields

: ti AtRi_.__T)VR 1
N = va- + Vb - Vr dtR

T/ t + AtRR
(l"b -- VT)AtRR + V VRdtR

VT

t

(C-20)
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and Equation (C-16) can be substituted for the remaining integrand

. -_

rT rT

1 + c2

N = (vb - vr)At  + vr
•_. "._

rR • rR

+ C2

×

t

+ AtRn
m

A --
u rv

1
C

A "__

U rT
1

c

A --
d rR

1

A

d rv
1-

C _

÷ _'T AtRR

,_. "__

rT rT

• 1 + c2

rR rR

+ C2

dtR (C-21)

In writing Equation (C-21), it is assumed that the squares of the inertial speeds, rT -rT

and t-R rR, are constant, since the motion of the tracking stations is due to the nearly

uniform rotation of the Earth. The refraction integral is evaluated by the trapezoidal rule,

yielding

A0t+AtRR + AQt (C-22)
2

The remaining integral in Equation (C-21) will not be considered. The geometries of the

uplink and downlink ranges are related to the light times by

Ou = Ir_ - r-TI = c(L - t'T) (C-23)
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and

0d = IFR- evl = c(¥R - L) (c-24)

The derivatives of these ranges with respect to the coordinate time t" at the receiver are

given by

d0u ^ (dt'v rT-dt'r'____=_= (.d_v dt'T)d_R - u r_ c (C-25)dt'R dtR J d_R dtR

^(d0d d rR C _ (C-26)_-- _ r v _ --

dt'R at R J dtR

Explicit solution for the coordinate time derivatives gives

A r R

dt'v 1- d -- 1 dOd
_ c = 1 (C-27a)

dTR ^ rv C dTp.
1- d --

C

^ _

dt'T _ 1- U C fdt'v)=--1 (.dOd__ d_R) (C-27b)
dTR 1 - _ ?r _"dTR.I c dTR +

C

Equations (C-27) show that a coordinate time increment of a given length at the receiving

station corresponds to increments of different lengths at the spacecraftand at the trans-

mitter, considering that the arrival of corresponding phases at tT and tT ÷ d t'T marks

the interval.
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Substitution of Equations (C-27) into the integrand in Equation (C-21) yields the expres-
sion for the integral term

1+ oVT . 1 - -- + dtR (C-28)
rR rg c k d t g d'tR JA

1 + c2 t

At the receiving station, the relationship between coordinate and proper time is

/1- rR rR d_R (C-29)dtR
V C2

Therefore,

( "- ")1 rR t-R do = .d_oo (C-30)

C2 d_R dtR

and, since it was assumed that rR rR -- constant, Equation (C-21) becomes

lgT
N = Vb AtRR VT A0 c + __ AtRR AQavg (C-31)

C C

Terms higher than first order in [r[/c have been neglected, and the computed quantity

AOo = (0u + 0d),R+atR_- (0u + 0d)t_ (C-32)

is the range difference. Since the quantities N, AtRR, Vb, and VT are known, the preproc-

essor program can compute the measurement

 o-c(2VT It, A_RR

and Equation (C-31) can be written as

A0c = bo + Abavg (C-34)
2AtRR 2
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where the division by 2At_ causes the range difference to approximate the one-way
range rate. Equation (C-34) mathematically describes the modeling of the USB Doppler
measurement in GTDS. The quantity on the left side of the equation is the computed
measurement and is calculated by means of Equations (C-32), (C-23), and (C-24). The
latter two equations require that two iterative light-time solutions be determined to corre-
spondto the round-trip propagation paths terminating at the receiving station at the start
and at the end of the Doppler-plus-bias count interval, AtRa. The first term on the right
side of Equation (C-34) represents the actual measurement and is calculated in the
preprocessorfrom the basic measurement data according to Equation (C-33). The second

term on the right in Equation (C-34) is the refraction correction^term. It is computed by

Equations (C-22) and (C-16), where the appropriate A_ and Ad path deflection vectors

are computed as described in Section 7.6.3.3.

The GRARR and sidetone ATSR Doppler measurement model in GTDS is very simple.

The Doppler measurements made with the GRARR and ATSR systems differ from those

made using the USB System in terms of the hardware details. The GRARR VHF System

operates with a nominal uplink carrier frequency of 148.98 megahertz and a nominal

downlink frequency of 136.89 megahertz. The ATSR System, operating in the sidetone

Doppler mode, uses C-band frequencies of approximately 6000 and 4000 megahertz on

the uplink and downlink legs, respectively.

The simple model for these data types is derived by further restricting the assumptions

made in deriving Equation (C-15). As given, that expression for the two-way Doppler-

shifted frequency ratio is valid under the assumptions that special relativity holds and that

the origin of the inertial coordinate frame is at the center of the Earth. If it is assumed

instead that the tracking station moves with uniform velocity, i.e.,

• 2_
rR = rT = constant (inertially)

then the origin of the coordinate system can be considered to be fixed at the tracking

station and moving with it. Then,

- (c-35)rR = rT = 0

and Equation (C-15) becomes

^ "_.

1 Uv rv

vR c (C-36)
VT A ._

1 dv rv
c

C-12



Substituting Equations (C-12) and (C-14) into this expression, expanding, eliminating^
higher order terms, and noting that in this ease u = - d,

A L.
U rv

1 - A0 (C-371V___RR= e +
A " C

_T U • rv
I+

where

- (c-38)AO = 2A_, r,

Since the tracking station is motionless in this coordinate frame, the unit vector _ can be

defined in terms of the instantaneous position vector of the vehicle relative to the station

at the vehicle turnaround time tv as

^ t-,,(t',,) (C-39)U =

{t'v(tv){

The instantaneous relative range at this time is

o = Ir,(L)l (C-40)

and the rate of change with respect to coordinate time is

= if" r'-v (C-41)
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If Equation (C-41) is substitutedinto Equation (C-37) and the result then substituted into
Equation (C-20), the following results:

N - VbAtRR = VT

t + Ataa

1+ __ c
c

/i2vT b A6v= - + dtR
C + b C

dta

(C-42)

Applying the Theorem of the Mean gives

N-vbAtRR =-2VT( _ ) Ataa- 2VT( A_v -)_ . rv. AtRR

C + QJavg C avg

(C-43)

The last term on the right is the refraction correction, and it will be assumed that the

mean value can be approximated with sufficient accuracy by evaluating A_a v and rv at
wlt

the vehicle turnaround time, tv, corresponding to the counting interval midpoint. With

this understanding, the subscript avg will be dropped from this term. Writing 0avg for the

value of the range rate which produces the correct average value in Equation (C-43) and

solving explicitly for _)avg gives

( )N A_v rv
C Vb 2VT

_avg = AtRR C (C-44)

( N 2VT A_v rv)2VT - Vb AtRR C
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Expanding this expression in terms of the small parameter A_v rv and eliminating
higher order terms in this parameter, as well as terms involving this parameter divided by
c, yields

( N)C Vb A'_RR

b_g = - A_av r_ (C-45)

L)
It is again assumed that the correct average value for 0avg, the instantaneous relative

range rate, is given by Equation (C-41) evaluated at t_, the vehicle turnaround time

corresponding to the count interval midpoint at the ground station. Equation (C-45) there-

fore represents the model of the GRARR and sidetone ATSR Doppler measurements in

the form of an instantaneous relative range rate. The term on the left is the computed

value obtained by evaluating Equation (C-42) for the current estimate of the spacecraft

ephemeris. The first term on the right side of Equation (C-45)

(L)c vb

b0 = (C-46)

L)
is the algorithm in current use in the preprocessing of the GRARR and ATSR Doppler

data (References 3 through 6 in Appendix A) and re_resents the given measurement. The
second term on the right side of Equation (C-45), Ativ • r_, is the refraction correction.

The vehicle velocity is taken at the time t_ defined above, and A_ is evaluated as

described in Section 7.6.3.3.
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APPENDIX D--MEASUREMENT WEIGHTING

Tables D-1 and D-2 define typical dynamic weighting factors and a priori standard devia-

tions for several measurement types that are processed in GTDS. The dynamic weighting

factors are used as described below.

If tr 2 is the a priori variance for a given measurement type and QF is the dynamic weight-

ing factor, then the data weight for a measurement is formed as

0F (D-l)
w- 02

For those measurements where a dynamic weighting factor is not specified, the data

weight takes the form

1
w - (D-2)

o

Table D-1. Dynamic Weighting Factors

MEASUREMENT TYPE

Minitrack direction cosine l

Minitrack direction cosine m

Range

Range rate

Elevation

Azimuth

DYNAMIC WEIGHTING FACTOR*

V/_ - t 2

i//'] _ m 2

C1 sin [elevation) + C2

C1 sin [elevation) + C2

C1 sin [elevation) + C2

C3 cos {elevation) + C4

* Cl, C2, C3, and C4 are user-supplied constants.
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Table D-2. Typical A Priori Data Standard Deviations

MEASUREMENT TYPE A PRIORI STANDARD DEVIATION

Range (VHF)

Range rate (VHF)

X30 orientation angle (VHF)

Y30 orientation angle (VHF)

Minitrack direction cosine l

Minitrack direction cosine m

Range (S-band)

Range rate (S-band)

500 meters

30 centimeters/second

3600 seconds of arc

3600 seconds of arc

0.3 roll

0.3 roll

100 meters

10 centimeters/second

Azimuth (C-band)

Elevation (C-band)

Range (USB)

Range rate (USB)

X30 (USB)

Y3o (USB)

X85 (USB)

Y85 (USB)

54 seconds of arc

54 seconds of arc

15 meters

5 centimeters/second

720 seconds of arc

720 seconds of arc

54 seconds of arc

54 seconds of arc
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APPENDIX E--MATRIX IDENTITIES ASSOCIATED

WITH SEQUENTIAL ESTIMATION

This appendix presents the derivations of a recursive form of the covariance matrix of

error and an alternative form of the optimal linear gain. The results of these derivations

are used in Section 8.4.1 to simplify the expressions for the covariance matrix of error

and the updated state correction vector.

The following symbols are used in the derivations:

P

I

Wm+ 1

F

-- symmetric, positive definite matrix

= identity matrix

= weight of the (m + 1) st measurement; its inverse is equal to the vari-
ance of the measurement noise

= matrix of partial derivatives (see Equation (8-6))

E.1 DERIVATION OF THE RECURSIVE FORM OF THE

COVARIANCE MATRIX OF ERROR, PAxm+l

From Equation (8-80b), the covariance matrix of error is given as

P&xm÷l = P_m + AP (E-l)

To find an expression for AP, Equation (E-l) is substituted into

-1 PAx_+I = IPax=,1 (E-2)

yielding

-1 AP) IPaxm+l (Paxm + = (E-3)

Inverting Equation (8-79b), the following expression is obtained:

1
P-a_=., = (P_= + FTm+I Wm+l Fm,1) (E-4)
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Substituting Equation (E-4) into Equation (E-3) gives

P-A_Xm_ + FT+1 Wm+l Fm+l Pax,. + FT+1 Wm+l Fm+l AP = 0

Premultiplying Equation (E-5) by PAxm yields

AP + PAx,. FTm+I Wm+l em+l PAx= + PAx= FT+I Wm+l Fm+l AP -- 0

(E-5)

(E-6)

Solving this expression for AP yields

Premultiplying by

- (I + Pax= Frm÷l Wm+l Fro+l) -1 Pax= Frm+l wm+l Fm+l PAX,. (E-7)

PAX= P-2x= results in the following:

-PAX= (I + PAX= FTm+IWm+l Fro+l) -1 FT+I Wm+l Fm+l PAx= (E-8)

Multiplying FTm+IWm+l Fm+l into the term in parentheses in Equation (E-8) and factoring

forward yields

AP = - PAx= FT+1 Wm+ 1 Fm+l (I + PAx= FT+1 Wm+ 1 Fm+l) -1 PAx= (E-9)

Equation 0E-9) is not the best form for AP. From the definition of the inverse of a ma-

trix, the following expression can be obtained:

(W_+l + Fm+l PAx= FTm+l)-1 (W_÷I + Fm+l PAx= FT÷I) = I (E-10)

Postmultiplying Equation (E-10) by Wm+l Fm+l and then factoring out Fm+l yields

(W_÷l + Fm+l PAx= FXm+l)-1 Fm+l (I + PAx= FT+1 Wm+l Fro+l) = Wm+l Fm+l (E-11)

If Equation (E-11) is then postmultiplied by (I + PAx= Frm+l Wm÷l Fro+l) -1 , the following

is obtained:

(W_+l + Fm+l PAx= FTm+I) -1 Fm+l = Wm+l Fm+l (I + PAx= FTm+1Wm+l Fro+l) -1 (E-12)
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Substituting Equation (E-12) into Equation (E-9) gives

AP = - Pax=Frm+l(win1,1+ Fm+lPax* F̀T+1)-1Fm+lPax= (E-13)

and substituting Equation (E-13) into Equation (E-l) gives

Pax=., = Pax*` - Pax*` FT+1 (w_1,1 + Fm+l Pax= FT+I) -1 Fm+l Pax., (E-14)

or

Pax*`+1 = (I - K Fro+l) Pax*` (E-15)

where

K = Pax*` FT+1 (w_÷l + Fm+l Pax*` FTm+,) -' (n-16)

E.2 DERIVATION OF AN ALTERNATIVE FORM OF THE OPTIMAL

LINEAR GAIN

From Equation (8-79), the covariance matrix of error is given as

Pax,,,., = (P-a_x*` + FTm*1Wm+l Fm+l) -1 (E-17)

Postmultiplying this equation by FTm+IWm+l and factoring out -:P_x= gives

Pax.÷, FT,, Win,, = (I + Pax.. FT+, Wm+l Fro+l) -1 Pax.. FT÷, Wm+l (E-18)

Premultiplying Equation (E-18) by FT+I Wm÷l Fm+l and substituting Equation (E-12) into

the result yields

FTm+I Wm+l Fm+l Paxm+l FT+I Wm+l

= FT+I (W_+l + Wm+l Paxm FT+I) -1 Wm+l Paxm FT÷I Wm÷l

(E-19)

E-3



Moving the factor Fm+l Pax= FTm+IWm+l inside the brackets and factoring out wm÷l gives

FTm+1Wm+l Fm+l Pa_ FTm+I Wm+, = Frm+, Wm+l [W_÷, (Fm+, Pax= Frm÷l) -1 + I] -1 (E-20)

Factoring out Fm+l Pax= FT÷I

(Frm+l Wm+l Fm+l) -1 gives

from this expression and premultiplying by

Pax=,1 FVm÷lWm+l = Pax= FTm+I -1(Wm+l + Fm+l Pax= FTm,I) -1 (E-21)

Finally, substituting Equation (E-21) into Equation (E-16) yields the following expression

for K:

K = PAx=,I FTm+I Wm+l (E-22)

v"

v
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GLOSSARY OF ACRONYMS

Definitions of the acronyms used throughout this document are given in this glossary. The

acronyms are listed in alphabetical order.

ALCOR Advanced Research Project Agency, Lincoln C-band Observ-

ARC

ATS

ATSR

AZ-EL

A.1

BRT

BRTS

CCIR

CSC

DC

DDNA

DIGS

DMC

DODS

DS

EKF

ET

EW

able Radar

Ambiguity resolving code

Applications Technology Satellite

Applications Technology Satellite Ranging

Azimuth-elevation

Atomic time

Bilateration Ranging Transponder

Bilateration Ranging Transponder System

International Radio Consultative Committee

Computer Sciences Corporation

Differential correction

Divided Difference Noise Analysis

Delta Inertial Guidance System

Dynamic model compensation

Definitive Orbit Determination System

Delaunay-Similar

Extended Kalman Filter

Ephemeris time

East-west

GL-1



FDF

FOC

GCI

GHA

GMT

GRARR

GSFC

GTDS

ID

JPL

KS

KSA

LTAS

MA

MECO-1

MEKF

MFR

MJD

NASA

NS

O-C

OCS

Flight Dynamics Facility

Fractions of a cycle

Geocentric equatorial inertial

Greenwich hour angle

Greenwich Mean Time

Goddard Range and Range-Rate

Goddard Space Flight Center

Goddard Trajectory Determination System

Identifier

Jet Propulsion Laboratory

Kustaanheimo-Stiefel

K-band single access

Launch Telemetry Acquisition System

Multiple-access

Main engine cutoff (first)

Modified Extended Kalman Filter

Multifunctional receiver

Modified Julian date

National Aeronautics and Space Administration

North-south

Observed-minus-computed

Orbit Computation System

GL-2



PECE

PN

PODS

QL

RA

R&D

RF

RMS

RMSP

RSS

RU

SA

SAO

SGLS

SLP

SOR

SRE

SSA

ST

STDN

TCOPS

TDRS

Predict, evaluate, correct, pseudoevaluate

Pseudorandomnoise

Preliminary Orbit Determination System

Quick look

Radar Altimeter

Researchand Development

Radio frequency

Root mean square

Predicted root mean square

Root sum square

Rangeunit

Single-access

Smithsonian Astrophysical Observatory

SpaceGround Link Subsystem

Solar/Lunar/Planetary

Statistical Output Report

STDN RangingEquipment

S-bandsingle-access

Station time

Spaceflight Tracking and Data Network

Trajectory Computation and Orbital Products System

Tracking and Data Relay Satellite
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TDRSS

TDRS-E

TDRS-S

TDRS-W

TIR

TIU

Tr&C

USB

USNO

UT, UT1, UT2

UTC

UT0

UT1

VDNA

VHF

VLBI

VOP

WSGT

Tracking and Data Relay Satellite System

TDRS-East

TDRS-Spare

TDRS-West

Time Increment Resolver

Time interval unit

Tracking, telemetry, and command

Unified S-band

United States Naval Observatory

Universal time

Coordinated universal time

Uncorrected universal time

Universal time, corrected for polar motion

Variate Difference Noise Analysis

Very high frequency

Very Long Baseline Interferometer

Variation of Parameters

White Sands Ground Terminal

GL-4
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GLOSSARY OF MATHEMATICAL SYMBOLS

The following pages contain a glossary of the mathematical symbols used throughout this

document. Symbols are given in alphabetical order, with Greek symbols following the

Roman symbols. Definitions of the major subscript, superscript, and operational symbol

conventions are given following the Greek symbols. For each symbol, the corresponding

definition is given. If a symbol has multiple definitions, the primary definition is generally

given first and/or definitions are listed in section-number order, with the pertinent section

number(s) for a specific definition given in parentheses.

A Azimuth angle

Rotation matrix for precessing between the mean equator and

equinox of two epochs (Section 3.3.1)

Reference satellite area for aerodynamic drag (Section 4.5)

Satellite area exposed to direct solar radiation (Section 4.6)

Cross-sectional area of the launch vehicle (Section 9.1)

Precession transformation matrix from mean of B1950.0 or

J2000.0 to mean of date coordinates (Section 3.3.1)

Effective transmit frequency from the user (Section 7.3.4)

A, B, C

Am, Bm, Cm, Dm

An, Bn, Cn

Matrices of time-varying coefficients in variational differential

equations (Sections 4.1, 6.1.4, and 6.3)

Coefficients of the polynomial fitted to Minitrack fine baseline

rectified data (Appendix A)

Coefficients of the polynomial fitted to Minitrack coarse and

medium baseline rectified ambiguity data (Appendix A)

mp
Solar paddle area (Section 4.5.2)

A.1 Atomic time

t r

A1, A2, A1, .., A26

AZ

Auxiliary parameters defined in Equations (5-184)

Azimuth angle (Section 7.3.7)

a Semimajor axis of the satellite orbit

Semimajor axis of the reference ellipsoid (Section 7.4)

Magnitude of the spacecraft thrust acceleration (Section 4.8)
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a

 0vl)

P

aF, _v, __

ai

au

ai, bij, ci

aj, bg, q

am

ap

_u

ax, ay, az

ao, al, ..., a4

al, a2, a3

Minitrack fine baseline fractional phase rate (Section A.4) _-

Inertial acceleration

tion 4.3)

Inertial acceleration of the point-mass Earth due to the

Moon's oblateness (Section 4.4)

Minitrack fine baseline fractional phase difference (Sec-

tion A.4)

Drag scale parameter coefficients (Sections 4.5.2 and 4.5.3)

Polynomial coefficients of polar motion (Section 3.3.2.2)

Time difference polynomial coefficients (Section 3.5.2)

Terms used in the evaluation of the Chebyshev polynomial

coefficients (bi) (Section 3.6)

Shank's coefficients used in the Runge-Kutta integration

method (Section 6.2.1)

Represents the jth row of the matrix of measurement partial -I

derivatives, F (Chapter 8)

Coefficients for the Hull Runge-Kutta 3(4+) method (Sec-

tion 6.2.2)

Acceleration vector in the nominal dynamical model (Sec-

tion 8.4.2)

Planet radius (Section 4.6.1)

Vector of unknown or unmodeled accelerations (Sec-

tion 8.4.2)

Coefficients of the polynomial characterizing the attitude con-

trol system acceleration (Section 4.7.1)

Coefficients of the polynomial characterizing the spacecraft

thrust acceleration (Section 4.8)

Parameters in the topside electron density profile (Sec-

tion 7.6)

vector in body-fixed coordinates (Sec-
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all, a12, a13, ..., a33

B

B,C,A

Bc, BF, BM

BI

B2

BI, ..., B15

b

bi

bn

bx, by, bz

C

Elements of the transformation matrix A (Section 3.3.1.1)

Transformation matrix from the true equator and equinox of

date coordinate system to body-fixed coordinates (Sections 3,

4, and 9)

Pilot-tone frequency translation from the return-link TDRS

(Section 7.3.4)

See A, B, C above

Minitrack coarse, fine, and medium phase rates (Section A.4)

Transformation matrix from true of date to pseudo body-fixed

coordinates (Section 3.3.2)

Simplified transformation matrix from pseudo body-fixed to

body-fixed coordinates (Section 3.3.2)

Auxiliary parameters defined in Equations (5-185) (Sec-

tion 5.10)

Measurement bias, which depends on the measurement type

and the tracking station (Sections 7.1 and 8.2)

Absolute phase difference for the Minitrack fine baseline

(Section A.4)

Chebyshev coefficients of the interpolating polynomial (Sec-

tion 3.6)

Numerical coefficients (Section 5.6)

Polynomial fitted to Minitrack fine baseline rectified data

(Section A.4)

Polynomial fitted to Minitrack coarse and medium baseline

rectified ambiguity data (Appendix A)

Coefficients of the linear term of the polynomial characteriz-

ing the attitude control system acceleration (Section 4.7.1)

Transformation matrix from the mean equator and equinox of

B1950.0 or J2000.0 coordinate system to the true of date coor-

dinate system (Section 3.3.1 and Chapters 4 and 9)

Calibration factor (Section 4.8.3)

Noise estimation convergence criterion (Section 8.7.4)
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C,A,B

CAc

CD, CDO

CF

Cmax

CN c

CNp

CR

CTp

Ci, Ci

cj

c m

CAsAu*

CAxAz

CAxon

CAxoAz

CAzn

C¢

Co, C1

See A, B, C above

Force coefficientfor the force along the cylinder axis (Sec-

tion 4.5.2) (see Table 4-I)

Aerodynamic drag coefficientwith and without systematic er-

ror corrections (Section 4.5)

Nondimensional force coefficient(Section 4.5.2)

Maximum allowed correction (Section 9.2.3)

Force coefficientfor the force normal to the cylinder axis

(Section 4.5.2) (see Table 4-1)

Force coefficient for the force normal to the plate (Sec-

tion 4.5.2) (see Table 4-1) •

Nondimensional force coefficient for solar radiation pressure
(Section 4.6)

Force coefficient for the force tangent to the plate (Sec-

tion 4.5.2) (see Table 4-1)

Comparison parameters (Section 9.3)

Harmonic coefficients of the Earth's nonspherical potential

(Section 4.4)

Gravitational harmonic coefficients

Correlation between errors in g and g* (Chapter 8)

Correlation between errors in x-and _-o (Chapter 8)

Correlation between errors in x-o and ff (Chapter 8)

Correlation between errors in X-0 and Z0 (Chapter 8)

Correlation between errors in z- and ff (Chapter 8)

Dot product (Chapter 9)

Count of the number of cycles of the GRARR and ATSR

Doppler reference frequency and the range reference fre-

quency (Chapter 7, Appendices A and C)
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Cg, Cp

q

Cx, Cy, Cz

D

D, Dij

Dj

Dn

DCI

d

A
d

de

Vacuum speed of light

Group speed and phase speed of propagation of an electro-

magnetic signal (Section 7.6)

Harmonic coefficients of the Moon's nonspherical potential

(Section 4.4)

Coefficients in the expression for Ym(t) (Section 3.6)

Coefficients of the quadratic term of the polynomial charac-

terizing the attitude control system acceleration (Sec-

tion 4.7.1)

Transformation matrix from true of date to local plane coordi-

nates (Section 3.3.4)

Parameter obtained from Barker's equation for parabolic mo-

tion (Section 3.3.8.1)

Parameter used to determine if the spacecraft is within the

cylindrical shadow of a celestial body (Section 4.6)

Linear differentiation operator (Sections 6.1.1 and 6.1.4)

Matrix and its elements (Section 5.5)

Transponder delay at node j (Section 7.3.2)

Quantity used to solve Kepler's equation for elliptical motion

(Section 3.3.8)

Doppler count interval (seconds) (average Doppler count in-

terval if it is not constant throughout the batch) (Sec-

tion 8.7.4)

Spacecraft diameter (Sections 4.5.2 and Appendix C)

Unit vector pointing down along the vacuum downlink path

from the spacecraft to the tracking station (Section 7.6.3 and

Appendix C)

Number of ephemeris days past Oh January 1, 1950 ET (Sec-

tion 3.3.3)
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E

Erel

E s

El, E2

EL

ET

e

me

ex, ey, ez

em

F

Eccentric anomaly of an orbit

Transformation matrix from body-centered true of date iner-

tial Cartesian coordinates to orbit plane coordinates (Sec-

tion 3.3.5)

Elevation angle measured from the reference plane to the sta-

tion-to-spacecraft position vector (Section 3.2.4, Chapter 7,

Section 9.2, and Appendix A)

Matrix of partial derivatives of the nonlinear measurement

equations f(x,z) with respect to consider variables z (Sec-

tion 8.2)

Measured elevation angle (Section 7.6)

Predetermined maximum of the relative truncation error, Er,l

(Section 6.2.2)

Relative truncation error (Section 6.2.2)

Linear shifting operator (Section 6.1.1)

Reference epochs (Section 3.3.1.1)

Integer exponents in preliminary orbit search (Section 9.2.3)

Elevation angle (Section 7.3.7)

Ephemeris time

Orbital eccentricity

Eccentricity of the central body (Section 3.3.1.3)

Eccentricity of the planet's figure (Section 3.3.6)

Eccentricity vector (Sections 3.2.6 and 3.3.10)

Herrick eccentricity vector components (Section 3.3.11.2)

Exponential multiplier (Section 7.6.3)

Hyperbolic anomaly (Section 3.3.8)

Eccentric longitude (Section 3.3.9); equals the sum of the ec-

centric anomaly, argument of perigee, and right ascension of

the ascending node
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g (Cont'd)

FB

FR

Frec

FTWF

F,,F,

Fo

F1, F2, F3, F4

F10.7

FaVg
lO.7

F

Total force acting on the spacecraft (Chapter 4)

Perturbed Hamiltonian (Section 5.5)

Matrix of partial derivatives of measurements with respect to

solve-for variables (Chapter 8 and Appendix E)

Augmented matrix of partial derivatives (Section 8.2)

Table entry for the thrust magnitude value (kilonewtons) (Sec-

tion 4.8.3)

Aerodynamic acceleration per unit density (Section 4.5.2)

Receive frequency (hertz) (Section 8.7.4)

Frequency received at the return-link TDRS from a target

(hertz) (Section 7.3.2.3)

Normal matrix (Chapter 8)

Expanded state normal matrix (Chapter 8)

Parameters used in the general relativistic expression (defined

in Appendix C)

Unperturbed Hamiltonian (Section 5.5)

Functions used in the evaluation of the density (Section 4.5.4)

Daily average of the 10.7-centimeter solar flux (Section 4.5)

81-day running average of F1o.7 (Section 4.5)

Augmented measurement matrix (Section 8.4)

Orbital true anomaly (Sections 3.3.8.1, 4.9, 5.9, 6.1.1.2,

9.2.3, and Appendix B)

flattening coefficient (Sections 3.3.6.1, 4.5.6, 7.2,Planet's

and 9.2)

Inverse flattening coefficient of the central body (Sec-

tion 3.3.13)
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f (Cont'd)

/

f, g

A A

f, g,

fo

fo F2

G

GHA

GM

g

g,g'

g(a)

gi

g_j

^
W

General time-varying function (Chapter 6)

Function arising from the equations of motion or the varia-

tional equations in the Runge-Kutta integrators (Section 6.2)

Function (Section 3.3.8)

Series used to predict spacecraft positions (Chapter 9)

Equinoctial unit vectors along the equinoctial coordinate di-

rections xep, Yep, and zep, respectively (Sections 3.2.5 and

3.3.9.1)

Measurement model (Section 4.9)

Functions used in the Runge-Kutta integration method (Sec-

tion 6.2)

Geometric relationship defined by the measurement type at

time t + dt (Sections 7.1 and 8.2)

Critical frequency of the F2 layer (Section 7.6)

Universal gravitational constant

Total angular momentum (Section 5.5 and Appendix B)

Greenwich hour angle

Gravitational constant of the central body (Sections 3.3.14

and 6.2.3)

Argument of the pericenter (Section 5.5)

Mean anomaly of the Moon and Sun,

tion 3.3.3)

Function relating r and

(Appendix B)

A

Nonlinear functional form of Asi

Elements of the metric matrix

space-time frame (Appendix C)

respectively (Sec-

a in the time element formulation

(Section 8.2.3)

defining the nature of the
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g$

H

nl

HM, Hm

H,h

Hs

h

h, hr

h, h, hx, hy, hz

ha, hp

hK

hL

Sea-level acceleration due to gravity (Section 4.5.4)

Local hour angle of the Sun (Section 4.5.4)

z component of the angular momentum (Section 5.5)

Matrix used for expressing the Cowell corrector formula in

matrix form (Chapter 6)

Ionospheric scale height in the expression for refractivity

(Section 7.6)

Maximum and minimum scale heights (Section 4.5.6)

Transformations of the covariance matrix, Pas, and the esti-

mated state, _-, respectively (Chapter 8)

Height above the mean spheroid, normal to the ellipsoidal sur-

face (Section 3.3.1.3)

Tropospheric scale height in the expression for refractivity

(Section 7.6)

Altitude measured as the perpendicular distance from the sur-

face of the ellipsoidal planet model to the point being meas-

ured (Sections 3.2.2, 3.3.6, and Chapter 4)

Energy of the orbit (Section 5.4 and Appendix B)

Longitude of the ascending node (Section 5.5)

Integration stepsize (Chapter 6)

Projection of the vector _ on the _ep axis (equinoctial ele-

ments) (Chapter 3)

Orbital angular momentum vectors and Cartesian components

(Section 3.3.8)

Apofocal and perifocal altitude (Sections 3.3.8.3, 9.2.3)

Negative Keplerian energy (Appendix B)

Lower altitude limit for the ionosphere (Section 7.6)
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rim

hr

hs

ho, hi, h2

I, IM

Xpn' IIp_; ISn, IIS n

ip

is

J_

J2, J3, J4, J5

JD

JE

Altitude corresponding to the maximum electron density (Sec-

tion 7.6)

Runge-Kutta stepsize hour (Section 6.2.3)

Height of the tracking station above the reference ellipsoid

(Sections 3.3.7, 7.6, and 9.2)

Parameters in the topside electron density profile (Sec-

tion 7.6)

Orbital inclination (Section 5.5)

Linear identity operator (Section 6.1.1)

Abbreviation used in the ray angular deflection formula (Sec-

tion 7.6.3) (Equation (7-175))

Identity matrix (Chapter 8 and Appendix E)

Inclination of the mean lunar equator to the ecliptic of date

(Section 3.3.3)

Summation symbols (Chapter 6)

Orbital inclination

Local incidence angle between an electromagnetic ray and a

radius vector (Section 7.6)

Incidence angle between the spacecraft axis and the paddle

surface (Section 4.5.2)

Inclination of the Moon's equatorial plane to the Earth's equa-

torial plane (Euler angle used in the transformation from

selenocentric to selenographic coordinates.) (Section 3.3.3)

Zonal harmonic coefficients (Jn = - C °) (Chapter 4)

Zonal harmonic coefficients (Chapter 5)

Julian day number

Julian epoch (Section 3.3.1)
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JED

K

K

Kp

k

A

k

k, kr

kl, k2

kl, k2, k3

k2, k3, k4, k5

L

L, Lb, LH, LT

Julian ephemeris date (Section 3.3.1)

Kalman filter gain matrix (Chapter 8)

Augmented gain matrix (Section 8.4)

Geomagnetic planetary index (Section 4.5.4)

Solar pressure model parameter (Section 4.6.2)

Factor used in defining the average Doppler frequency (Sec-

tion 7.3)

Unit vector normal to the orbital plane (Section 9.2)

A
Projection of the vector _- on the Xep axis (equinoctial ele-

ments) (Chapter 3)

Functions used in the Runge-Kutta integration method (Sec-

tion 6.2)

Gain constants used to compute measurement variances (Sec-

tion 8.1)

Decay constants for the lower, middle, and upper third, re-

spectively, of the topside electron density profile (Section 7.6)

Auxiliary parameters (defined in Section 5.9)

Cylinder length (Section 4.5.2)

Luminosity of the Sun (Section 4.6)

Magnitude of the angular momentum vector (Section 4.8.2)

Total energy of the orbit (DS element) (Chapter 5 and Appen-

dix B)

KS matrix (Section 5.4)

Length of pseudorandom code (chips) (Section 7.3.2.3)

Search level (Section 9.2.3)

Unit vector directed toward the spacecraft from a tracking sta-

tion in mean of B1950.0 or J2000.0, body-fixed, local tangent,

or true of date coordinates, respectively (Section 9.2)
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L1

(LTP) 1, (LTP) 2, (LTP) 3

!

M

m

M

M(ti)

M(Z)

M,M'

M, M U, m U

Mc i

Components of the angular momentum vector (Section 4.8.2)

Libration point, lying on the vector between the Sun and the

Earth-Moon barycenter (Section 3.3.14)

Transformed components of perturbing accelerations (Sec-

tion 5.4)

Parameter in Robert's temperature profile (Section 4.5.4)

Mean anomaly in Delaunay elements (Chapter 5 and Appen-

dix B)

Direction cosine of the angle between the station-spacecraft

vector and the local tangent east-pointing axis; this angle is

measured by the Minitrack System (described in Sec-

tion 7.2.3)

Number that scales the hyperellipse of constant (normal)

probability in terms of the standard deviations (Section 8.5.2)

Direction cosine of the corrected phase difference from the

east-pointing axis at the station (Appendix A)

Herrick angular momentum vector and its components (Sec-

tions 3.2.6, 3.3.10, and 3.3.11)

Orbital mean anomaly

Transformation matrix from the geocentric body-fixed coordi-

nate system to the true of date system (Section 9.1)

Maneuver parameters (Section 4.8.4)

Table entry for the mass (kilograms) (Section 4.8.3)

Mean molecular mass of atmosphere (Section 4.5.4)

Transformation matrices from selenocentric to selenographic

coordinates (Sections 3.3.3 and 4.4)

Notation used in describing the matrix inversion procedure

(Section 8.6)

Final unedited batch calibration residual mean from the ith

batch (Section 8.7.3)
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MC

ME

Me

Mi

Mk

Mk-I

MM

Ms

MS

Mo

MAX

MJD, MiD i

MUF(3000)F2

M-factor

m

Final unedited batch calibration mean value (Section 8.7.4)

Mass of the Earth (Section 3.3.14)

Final edited batch validation residual mean (Section 8.7.3)

Molecular mass of atmospheric constituents (Section 4.5.4)

Transformation matrix from body-fixed coordinates, centered

at a tracking station, to local tangent coordinates at the station

(Section 3.3.7 and Chapter 9)

Mean of the unedited residuals (Section 8.7.2)

Mean of the unedited residuals from the previous edit loop

(Section 8.7.2)

Mass of the Moon (Section 3.3.14)

Mean of the unedited batch calibration residual mean values

(Section 8.7.3)

Mean of the unedited batch calibration residual standard de-

viations (Section 8.7.3)

Sea-level mean molecular mass (Section 4.5.4)

Final unedited batch validation residual mean (Section 8.7.3)

Mean of unedited residuals (Section 8.7.2)

Maximum (approximately) positive number representable in

the computer (Section 9.3)

Modified Julian date and tabular modified Julian date (Sec-

tion 3.5)

Highest frequency usable for a 3000-kilometer single-hop

propagation via the F2 layer (Section 7.6)

Ratio of MUF(3000)F2 to the critical frequency foF2 (Sec-

tion 7.6)

Mass of a body (Chapter 4)

Direction cosine of the angle between the station-spacecraft

vector and the local tangent north-pointing axis; this angle is

measured by the Minitrack System (Section 7.2.3)
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m (Cont'd)

m

m

m I

mbo

mig

N

m

N

N, Ni, No

NCNTR

N_-

a

ND

N_, Nm

NF

Sigma multiplier for the noise analysis "m-sigma" edit (Sec-

tion 8.7.4)

Mass of the satellite/launch vehicle combination at ignition (or

at the last burnout) (Section 9.1)

Mean value of each residual group (Section 8.6)

Direction cosine of the corrected phase difference from the

north-pointing axis at the station (Appendix A)

Vehicle mass at burnout time (Section 4.8.4)

Vehicle mass at ignition time (Section 4.8.4)

Distance along the normal vector from the intersection of the

normal and the ellipsoid to the zb axis (Figure 3-15 and Sec-

tion 3.3.6)

Nutation transformation matrix from mean of date to true of

date coordinates (Sections 3.3.1 and 9.2.1)

Number of unedited residuals available for noise estimation

(Section 8.7.4)

Total number of counts (Section A.8)

Ascending nodal vector in the equinoctial system (Figure 3-5

and Section 3.2)

Number of cycles of the Doppler-plus-bias signal counted over

the Doppler counting cycle (Appendix A and Appendix C)

Doppler count VDNA noise estimate (Section 8.7.4)

Averaged Doppler VDNA noise estimate (Section 8.7.4)

Doppler DDNA noise estimate (Section 8.7.4)

Electron density and maximum electron density (Section 7.6)

Minitrack fine baseline lengths in terms of vacuum wave-

lengths of the nominal 136.0 megahertz frequency signal (Ap-

pendix A)
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NI, NT

Ni, Ni-i

Npq

N.-
R

Nk

Ns

No, N1, Nz

n

A
n

Ionospheric and tropospheric refractivity (Section 7.6)

Doppler counter readings (in counts) associated with time

tags T1 and Tt-1, respectively (Section A.8.2)

Brouwer drag parameters (Section 4.9)

Averaged range-rate VDNA noise estimate (Section 8.7.4)

Intermediate range-rate DDNA noise estimate (Section 8.7.4)

Magnitude of the normal vector to the surface of the reference

ellipsoid at the tracking station (Sections 3.3.7 and 9.2)

Surface refractivity (Section 7.6)

Parameters in the topside electron density profile (Sec-

tion 7.6)

Keplerian mean motion

Adjustable parameter exponent of the cosine variation be-

tween the Harris-Priester maximum and minimum density

profiles (Sections 4.3.5 and 5.3)

Uniformization constant (Section 5.1)

Number of accelerations in the backpoints table (Sec-

tion 6.1.5)

Variable local index of refraction (Section 7.6)

Measurement noise (Section 7.8)

Sigma multiplier (Section 8.7.2)

Mean motion (Section 9.2.3)

Total number of counts (Section A.8.2)

Unit vector along the idealized straight signal propagation

path (Appendix C)

Random noise vector (Chapter 8)

Unit vectors normal to the reference ellipsoid and the geoid,

respectively (Section 7.4)
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n(T)

nb

n$

A

rlt_

no

P

P

PA, PT

A

Pc

At

Pc

A

nr

Integer number of ambiguity intervals for a measured range at

time tag T (Section 7.3.2)

Number of batches of either two-way or hybrid range data for

each ground transponder user (Section 8.7.3)

Total number of residuals for a tracking station and data type

(Section 8.6)

Unit vectors along the local signal propagation path at the

transmitter and receiver, respectively (Appendix C)

Number of remaining unedited residuals in the category vali-

dation statistics (Section 8.7.2)

Computed measurement (Sections 7.1, 7.3, and 8.2)

Transformation matrix from orbital rectangular coordinates to

true of date coordinates (Sections 3.3.8.1 and 3.3.8.2)

Orbital period (Section 3.3.8.3)

Pitch angle (Section 4.8.4)

PN code period (seconds) (Section 7.3.2.3)

Ionospheric term used in the equation for atmospheric time
delay (Section 7.6.3)

Order of the variate differences (Section 8.7.4)

Symmetric positive definite matrix (Appendix E)

Perturbative accelerations additional to the primary body's in-

verse square gravity (Chapter 5 and Appendix B)

Augmented error covariance matrix (Section 8.4)

Adopted and true pole, respectively, of the Earth (Sec-

tion 3.3.2.2)

Computed spatial beam vector (Section 7.3.7)

Computed unit vector from the return-link TDRS to the user

spacecraft or transponder (Section 7.3.7)
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P (cose)

Pis

A

Po

PT, YT

PAu

PAx

Paxo

PAz

Pazo

Ipn, IIpn

PI, P2, P3

P

P

Legendre functions (Section 4.2)

Pitch angle at ignition (Section 4.8.4)

Pitch angle rate (assumed constant) (Section 4.8.4)

Legendre functions (Section 4.3.1)

Measured spatial beam vector (Section 7.3.7)

Force on a perfectly absorbing surface due to solar radiation

pressure at one astronomical unit (Section 4.6)

Pitch and yaw angles, respectively, defining the thrust direc-

tion (Section 4.8)

Covariance matrices (Chapter 8)

Covariance matrix of the estimated state variable errors

(Chapter 8)

Covariance matrix of the state and model parameter errors

(Section 8.2.3)

Covariance matrix of estimated solve-for variable errors

(Chapter 8)

Covariance matrix of a priori solve-for variable errors (Chap-

ter 8)

Covariance matrix of consider variable errors (Chapter 8)

Covariance matrix of a priori consider variable errors (Chap-

ter 8)

Summation matrices (Section 6.1.4)

Components of the perturbing accelerations (Section 5.4)

Semilatus rectum of the orbit

Dimension of the solve-for vector (Chapter 8)

Dynamic parameters in the equations of motion that can be
estimated; these include variables related to the position and

velocity, gravitational harmonic coefficients, drag parameters,

etc. (Section 7)
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ill

A A
P, q

P, Pr

pM(¢)

PX

Q

t

Q, Oi

q

B

q

q, qr

Components of ff remaining after excluding satellite position

and velocity variables; these components include constant

model parameters pertaining to drag, gravitational harmonic

coefficients, etc. (Section 4.1)

Unit vectors in the orbit plane (Section 4.9)

Projection of vector iq" on the _ep axis (equinoctial elements)
(Sections 3.2.6, 3.3.9.1, and 3.3.11.1)

Interpolating polynomial representing a component of accel-

eration as a function of normalized time (Section 5.6)

Normal probability density function (Section 8.5)

Transformation matrix from spacecraft vehicle-fixed axes to

true of date coordinates (Section 3.3.12 and Chapter 4)

Difference between ephemeris data and the function Ym(t)

(Section 3.6)

Ionospheric term used in the equation for atmospheric time

delay (Section 7.6.3)

Least-squares loss function (Sections 8.1 and 8.2)

Covariance of the state noise (Section 8.4)

Linearized least-squares loss function (Sections 8.1 and 8.2)

Orbital accuracy (Section 9.2.3)

Pericentric distance (Section 3.3.8.1)

Scaling factor defining time transformation (Section 5.5 and

Appendix B)

Dimension of the consider vector (Chapter 8)

Total parameter vector of all candidate solve-for variables

(Chapter 7)

Projection of the vector N on the _ep axis (equinoctial ele-

ments) (Sections 3.2.5, 3.3.9.1, and 3.3.11.1)
v
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R

m

R

".L._

R

R

RB, VB

RD

RE

RE

Universal gas constant (Section 4.5.4)

Magnitude of the position vector (Section 6.2.3)

Rate of pseudorandom code (chips per second) (Sec-

tion 7.3.2.3)

Covariance matrix of the measurement noise (Section 8.4)

Maximum residual multiplier in preliminary residual editing

(Section 8.6.2)

Position vector in mean equator and equinox of B1950.0 or

J2000.0 coordinates (Chapter 3)

Column vector of vehicle position coordinates (Chapter 4)

Epoch state elements (Section 7.2.3)

Vector from the center of an inertial coordinate system to the

satellite (Section 4.2.1)

Velocity of the spacecraft (Sections 4.5.2 and 7.1)

Satellite position vector relative to the shadowing body (Sec-

tion 4.6.1)

Total acceleration vector expressed in an inertial Cartesian

coordinate system (Section 4.1)

Thrust acceleration vector at a tabular point ti (Section 4.8.3)

Polar radius of the Earth (Section 4.5.4)

Inertial position and velocity vectors, respectively, of the

barycenter with respect to the Sun (Section 3.3.14)

Acceleration due to aerodynamic forces expressed in an iner-

tial Cartesian coordinate system (Chapter 4)

Inertial position vector of the Earth with respect to the Sun

(Section 3.3.14)

Inertial acceleration of the Earth in an inertial Cartesian coor-

dinate system (Section 4.4)
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m

Rio

m

Ri

Rkp

RM

RM

KM(E)

Rm

rmax

rmax

RNS

RpM

Rp

RSR

Inertial acceleration of the point-mass Earth due to an oblate

Moon (Section 4.4)

Equatorial and polar radii, respectively, of the Earth or refer-

ence body

Acceleration due to the mutual nonspherical gravitational at-

traction of the Earth and Moon in an inertial Cartesian coordi-

nate system (Chapter 4)

Geocentric inertial spacecraft position vectors (Chapter 9)

Vector from the k th body to the satellite (Chapter 4)

Inertial position vector of the Moon with respect to the Sun

(Section 3.3.14)

Inertial acceleration of the Moon in an inertial Cartesian coor-

dinate system (Chapter 4)

Inertial acceleration of the point-mass Moon due to an oblate

Earth (Section 4.4)

Equatorial radius of the Moon (Section 4.4)

Maximum position tolerance (Section 4.8.4)

Maximum velocity tolerance (Section 4.8.4)

Gravitational acceleration due to the nonsphericity of the

gravitational potential in an inertial Cartesian coordinate sys-

tem (Chapter 4)

Gravitational acceleration due to n-point masses in an inertial

Cartesian coordinate system (Chapter 4)

See Re, R v above

Acceleration due to solar radiation pressure expressed in an

inertial Cartesian coordinate system (Chapter 4)

Position vector of the Sun in the inertial mean of B1950.0 or

J2000.0 coordinate system (Section 4.6.1)

GL-24



Rsun

RT

RTAC

Rx, Rz

R1, r2

R1, R2

Rlmax

Rlmin

RFc

RMS

RMSP

RMSB

Magnitude of the tracking station position vectors (Chapter 9)

One astronomical unit (Section 4.6.1)

Acceleration due to thrusting of the spacecraft engines in an

inertial Cartesian coordinate system (Chapter 4)

Acceleration due to attitude control system corrections in an

inertial Cartesian coordinate system (Chapter 4)

Right ascension of the fictitious mean Sun on the mean equa-

tor of date and measured from the mean equinox of date

(Section 3.4.3)

Distance from the spacecraft to the Sun (Section 4.6.1)

Rotational transformations about the ^ ^x, y, and _ axes, re-

spectively (Section 3.3)

Rotations to transform between two mean of date coordinate

systems (Section 3.3.1)

Initial and final coordinates, respectively (Section 3.3.1.1)

Values of the spacecraft radii at times tl and t2, respectively,

in preliminary orbit search (Section 9.2.3)

Upper bound on R1 (Section 9.2.3)

Lower bound on R1 (Section 9.2.3)

Measurement correction due to refraction, light-time, trans-

ponder delay, antenna mount errors, etc. (Chapter 7)

Actual root mean square error (Section 8.6)

Predicted root-mean-square error (Section 8.6)

Smallest RMS over all prior iterations (Section 8.6)

Radial distance from the origin to the satellite or point being

measured
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r (Cont'd)

f

r, r,

ra

fb, r'b

rEM

 (tj)

 +1(tj+1)

_p

_It

Magnitude of the satellite position vector in inertial geocentric

coordinates (Sections 3.3.13, 4.5.6, and Appendix B)

Geocentric radius (Section 7.4)

Position vector

Satellite position vector in inertial geocentric coordinates (Sec-

tion 4.5.6)

Radius vector of the spacecraft center of mass (Section 7.7.4)

Position vector in true of date coordinates (Sections 3.2, 3.3,
and 8.4.2)

Position, velocity, and acceleration vectors in the inertial Car-

tesian coordinate system (Chapter 5)

Magnitude of the apofocal radius vector (Section 3.3.8)

Position vector expressed in body-fixed and pseudo body-

fixed coordinates, respectively

Position vector in Cartesian coordinates referred to the mean

equator and equinox of date (Sections 3.2.1 and 3.3.1.2)

Position vector of the Earth in selenographic coordinates (Sec-

tion 4.4)

Acceleration of the point-mass Earth due to the oblate Moon

in selenographic true of date coordinates (Section 4.4)

Position vector of the Moon in geocentric coordinates (Sec-
tion 4.4)

Position of node j at time tj (Section 7.3.2)

Position of node j + 1 at time tj+l (Section 7.3.2)

Position vector referred to the local plane coordinate system

(Section 3.3.4.1)

Position vector referred to the local tangent coordinate system

(Sections 3.2.4 and 3.3.6)
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_ME

rl/laJ(

]'ram

_p

rp

rr, rt

r$

Position vector of the Moon in true of date coordinates (Sec-

tion 4.4)

Acceleration of the point-mass Moon due to the oblate Earth

in goecentric true of date coordinates (Section 4.4)

Position vector of the Earth in selenocentric coordinates (Sec-

tion 4.4)

Maximum position tolerance (Section 4.8.4)

Maximum velocity tolerance (Section 4.8.4)

Position vector referred to the orbit plane coordinate system

(Sections 3.2.5 and 3.3.4)

Magnitude of the perifocal radius vector (Section 3.3.8.3)

Position vector referred to the orbital rectangular coordinate

system with the _p axis directed toward perifocus (Sec-

tion 3.3.8)

Position vector of the tracking station at signal reception in

inertial Cartesian coordinates (Chapter 7)

Position vectors of the generalized receiver and transmitter in

inertial Cartesian coordinates (Appendix A)

Geocentric radius of a point (tracking station) on the surface

of the ellipsoidal planet (Sections 3.3.6 and 7.6)

Ellipsoidal radius of the central body (Section 3.3.13)

Radius of the Earth (Section 4.5.6)

Inertial position vector of the user spacecraft or transponder

(Section 7.3.3)

Location in Earth-fixed coordinates of the transmitting and

receiving stations, as well as the Bilateration Ranging

Transponder (BRT) locations in the case of TDRSS Bilatera-

tion Ranging Transponder System (BRTS) tracking

Position vector of the return-link TDRS at the measurement

time (Section 7.3.7)
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rT (Cont'd)

.°

r-TAC

t'2, R1

S

S¢

Position vector of the tracking station at signal transmission in

inertial Cartesian coordinates (Chapter 7, Appendix A, and

Appendix C)

Acceleration due to thrust of the spacecraft engines (Sec-

tion 4.8)

Acceleration due to attitude control effects (Section 4.7)

Vector in vehicle-fixed coordinates (Section 4.7.1)

Position vector of the spacecraft in inertial Cartesian coordi-

nates (Chapter 7 and Appendix C)

Earth-centered position vector (Section 3.3.5)

Position and velocity vectors at the initial time, to (insertion

vector) (Section 9.1)

Final and initial coordinates, respectively (Section 3.3.1.1)

Mean solar flux at one astronomical unit (Section 4.6)

Orbital period in a regularized time system (Section 6.4)

Series involved in atmospheric signal propagation time delay

(Section 7.6.3)

Epoch sensitivity matrix (Section 8.2.3)

Eigenvector transformation from basic coordinate frame to

principal axes (Section 8.5)

Sum of the squares of the residuals about the mean in each

residual group (Section 8.6)

Computed slope (Section 9.2.3)

Arc length along the signal propagation path (Appendix A)

State vector at burnout (Section 4.8.4)

Final unedited batch calibration standard deviation from the

ith batch (Section 8.7.3)

Projection of the spacecraft position vector onto the plane nor-

mal to the Sun vector in the shadow model (Section 4.6)
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S: (Cont'd)

So, Se, S v, Ss

Se

m

Sf

Si

Sk-1

SM

s TM

Sp

Ss

SS

Su

Final unedited batch calibration standard deviation (Sec-

tion 8.7.4)

Coefficients in the aerodynamic force equations (Sec-

tion 4.5.2)

See So, S_, Sp, Ss above

Final edited batch validation residual standard deviation (Sec-

tion 8.7.3)

Postburnout state vector (Section 4.8.4)

Preignition state vector (Section 4.8.4)

Harmonic coefficients of the Earth's nonspherical potential

(Section 4.4)

State vector at ignition (Section 4.8.4)

Variance of the unedited residuals in the category validation

statistics (Section 8.7.2)

Standard deviation of the unedited residuals from the previous

edit loop (Section 8.7.2)

Standard deviation of the unedited batch calibration residual

mean values (Section 8.7.3)

Gravitational harmonic coefficients (Section 4.3)

See So, Se, Sp, Ss above

Standard deviation of the unedited batch calibration residual

standard deviations (Section 8.7.3)

See S_, Se, Sp, S_ above

Greenwich hour angle of the fictitious mean Sun (Sec-

tion 3.4.3)

Final unedited batch validation residual standard deviation

(Section 8.7.3)
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ISn, IIS n

So

S1, $2, $3

ST

SV

T

TA

Tacl, Tac2

Tb

First and second ordinate sums, respectively, in the Adams-

Cowell formulas (Chapter 6)

Scaling factor (Section 9.2.3)

Components of the unit vector to the Sun in true of date coor-

dinates (Section 4.5)

Station time (defined in Section 3.4.8)

Universal time correction due to seasonal variations in the

rotation of the Earth (Section 3.4.6)

New independent variable in the time-regularized equations of

motion (Chapters 5 and 6 and Appendix B)

Dynamic solve-for parameter (Section 7.3.3)

Orbit direction indicator (direct or retrograde) (Section 9.2.3)

State vector (Chapters 7 and 8)

Harmonic coefficients of the Moon's nonspherical potential

(Section 4.4)

Time in Julian centuries (of 36525 days) between the refer-

ence epoch and epoch J2000.0 (Section 3.3.1)

Time in tropical centuries (of 36524.2198 mean solar days)

elapsed from the B1950.0 epoch to the date specified (Sec-

tion 3.3.1.3)

Thrust magnitude (Section 4.8.4)

Time tag (Sections 7.3 and A.8)

Orbital period (minutes) (Section 9.2.3)

Average orbital period defined in terms of the average value

of the semimajor axis (Section 5.8)

Epoch times at which the attitude control acceleration polyno-

mials are turned on and turned off (Section 4.7.1)

Rocket motor's effective burn time (Section 4.8.1)
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TC

TE

Tf, To

Ti

Tig

%

TLO

Train

Tu

Tx

T(Z)

Nighttime minimum global exospheric temperature for zero

geomagnetic activity (Section 4.5.4)

Total computed time between consecutive measurements

(Section 9.2.3)

Time in Julian centuries (36525 Julian days) measured from

1900 January 0 d 12 h ET (JD 2415020.0) to the specified date

(Section 3.3.1.2)

Number of Julian centuries of 36525 Julian ephemeris days

past 0 a January 1, 1950 ET (Section 3.3.3)

Effective termination and initiation times, respectively, of the

spacecraft motor burn (Section 4.8.1)

Specified time to which the covariance and correlation matri-

ces are propagated (Chapter 8)

Thrust magnitude at ignition (Section 4.8.4)

Thrust rate (assumed constant) (Section 4.8.4)

Chebyshev polynomials (Sections 3.6 and 5.6)

Time of liftoff (UTC) (Section 9.1)

Period of a spacecraft orbiting at the mean radius of the Earth

(Section 9.2.3)

Time in Julian centuries (of 36525 Julian days) from B1950.0

(Section 3.3.1.2)

Number of Julian centuries elapsed from 12 hours UT1 Janu-

ary 0, 1900 (JD-- 2415020.0) to the UT1 time of date

[B1950.0 system] (Sections 3.3.2 and 3.4.3)

Number of LIT Julian centuries elapsed from epoch J2000.0 to

0 hours UT1 of the date [J2000.0 system] (Section 3.3.2.1)

Inflection point temperature (Section 4.5.4)

Atmospheric temperature profile (Section 4.5.4)
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To, Tf

TI

TI, T2, T3

T®

t

t*

tB

tbo

tF

tFM

tf

ti

See "If, To above

Uncorrected exospheric temperature (Section 4.5.4)

Numerical integration error bounds (Section 6.1.7)

Corrected exospheric temperature (Section 4.5.4)

Coordinate time measured in seconds from epoch; the inde-

pendent variable of the equations of motion

Time in Julian centuries between the reference epoch and the

data epoch (Section 3.3.1)

Universal time (UT) measured in seconds from 0 hours UT1

of the date of the computations (Section 3.3.2.1)

Request time (Section 6.1.5)

Independent variable in the Runge-Kutta integrators (Sec-

tion 6.2)

Time tag of the measurement (Section 7.1)

Variable used for testing residuals to determine the confi-

dence interval for the group mean (Section 8.6)

Coordinate time (Appendix C)

Reference date (Section 3.3.1.4)

Clock bias (Section 7.3.3)

Maneuver end (burnout) time (Section 4.8.4)

Time commencing the frame time interval for the GRARR

and Minitrack systems (Appendix A)

Midframe time for the Minitrack System (Appendix A)

Time of the postburnout state vector (Section 4.8.4)

Time of the final measurement (Section 8.4)

Time of the preignition state vector (Section 4.8.4)
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tig

tj

t

tj

tj_.1

tm

tn

tq

tp,

tr, t

t$

tT

tv

to

Maneuver start (ignition) time (Section 4.8.4)

Signal retransmission time from node j (Section 7.3.2)

Signal reception time at node j (Section 7.3.2)

n th approximation for tj (Section 7.3.2.1)

(n + 1) th approximation for tj (Section 7.3.2.1)

Corrected midframe time of the Minitrack System (Appen-

dix A)

Time associated with the most recent entry in the backpoints

table (Section 6.1.5)

Reference time associated with the Brouwer drag parameters

(Section 4.9)

Devised output time in the fourth-order Runge-Kutta integra-

tor (Section 6.6.3)

Time at which the ground station receives the return signal

(Chapter 7 and Appendix A)

Time tag of the C-band range data (Section 7.2.3)

Proper time at the receiving station (Appendix C)

Requested time in multistep interpolation with fixed-step inte-

gration (Section 6.1.5)

Sample time of the tracker range and range-rate data (Appen-

dices A and C)

Signal transmission time at the ground station (Chapter 7 and

Appendix A)

Signal turnaround time at the spacecraft (Chapter 7 and Ap-

pendix A)

Epoch time (Chapter 4 and Section 8.2.3)

Epoch of the estimated solution (Section 7.3.2)
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tl, h

U

A
U

U, V

A

UB

UB x, UBy, UB z

A

UN

A

U,

A

UT

LIT

UTC

UT0

UTI

LrI2

A

Uzlp

A A

Ua, Ut

Times of the first two measurement in preliminary orbit

search (Section 9.2.3)

Geoidal undulation (Section 7.4)

Unit vector directed at the satellite and referred to the geocen-

tric inertial Cartesian coordinate system (Sections 3.3.5 and

4.8.2)

Tropospheric delay terms (Section 7.6.3)

Unit vector directed toward the apex of the diurnal bulge ex-

pressed in inertial geocentric coordinates (Section 4.5.6)

A

Components of the unit vector UB (Section 4.5.6)

Unit vector normal to the orbital plane in the direction of the

angular momentum vector (Section 3.3.4.2)

Unit vector directed at the Sun from a shadowing body (Sec-

tion 4.6.1)

Unit vector directed along the thrust axis and referred to the

geocentric inertial Cartesian coordinate system (Section 4.8.1)

Universal time

Coordinated universal time

Uncorrected universal time

UT0 corrected for polar motion; Greenwich universal time

measured from midnight (epoch) to time t; UT1 is positive for

t after midnight and negative for t before midnight

UT1 corrected for periodic seasonal variations

Unit vector in the local plane _lp-aXis direction and referred

to the geocentric inertial Cartesian system (Section 3.3.4.2)

Partial derivatives of l_lT with respect to the right ascension,

a, and declination, 6 (Section 4.8.2)
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A
U

u-,_

A

uj

A

Ux_

V

A
V

m

VB

m

VE

m

Vrel

VM

A

Uy_

A

Uz

Unit vector pointing along the vacuum uplink signal propaga-

tion path from the station to the spacecraft (Section 7.6.3 and

Appendix C)

Expanded state vector containing as components the merged

vectors X and z (Section 8.2)

Best estimate of uncertain state and model parameters (Sec-

tion 8.2.3)

Vector of Gaussian noise (Section 8.4)

Uncertain model parameters in _a (Section 8.2.3)

Transformed position and velocity vectors (Section 5.4)

Unit vector along the leg between nodes j and j + 1

tion 7.3.3)

(Sec-

Unit vectors in the body-centered true of date Cartesian coor-

dinate system (Section 3.3.8.3)

Spacecraft's velocity vector magnitude

Magnitude of the velocity with respect to a medium producing

an aerodynamic force (Section 4.5)

Perturbing potential function (Section 5.4 and Appendix B)

Unit vector normal to the geocentric position vector and lying

in the orbital plane (Sections 3.3.5 and 4.8.2)

Inertial velocity vector of the barycenter with respect to the

Sun (Section 3.3.14)

Relative wind velocity in the spacecraft body axes coordinate

system (Section 4.5.2)

Inertial velocity vector of the Earth with respect to the Sun

(Section 3.3.14)

Velocity of the spacecraft relative to the atmosphere (Sec-

tion 4.5)

Inertial velocity vector of the Moon with respect to the Sun

(Section 3.3.14)
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V

V

A
V

Vn

W

W

A
W

w_

Win÷ 1

X, Y, Z

A

XB

Xb, Yb, Zb

XI, YI

X3o, Y3o

Local vertical at the ground station (Section 7.6.3)

Magnitude of spacecraft velocity (Appendix B)

Velocity vector

Unit velocity vector (Section 4.8.3)

Quantity denoting the Cowell velocity integrator for linear sys-

tems (Section 6. I. 3)

Weighting matrix in the least-squares loss function (Chap-

ter 8)

Vector parallel to the angular momentum unit vector (Sec-

tion 9.2.3)

Unit vector directed normal to the orbit plane in the direction

of the angular momentum vector (Sections 3.3.5 and 4.8.2)

Augmented weighting matrix (Chapter 8)

Weighting factor for the pth-order divided differences (Sec-

tion 8.7.4)

Component of the measurement weight matrix, W, corre-

sponding to the jth measurement (Section 8.6.2)

Weight of the (m + I) st measurement (Chapter 8 and Appen-

dix 8)

Inertial Cartesian components of spacecraft position in the

mean of B1950.0 or J2000.0 coordinate system (Section 3.2.1)

Unit vector along the cylinder axis (Section 4.5.2)

Components of the TDRS spacecraft vehicle-fixed position

(Section 7.3.7)

Position coordinates in the equinoctial coordinate system (Sec-

tions 3.3.9.1 and 5.7)

Gimbal angles for the GRARR, ATSR, and SRE USB systems

(Section 7.2.3)
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X85, Ya5

X

X

R

X, X 1

A

X-, Xi, X i, XO

x, y, z

A, _, _,
X _

X', Y ,

Xb, Yb, Zb

¢ t t

Xb, Yb, Zb

XE, YE, ZE

Xep, Yep, Zep

X i

Gimbal angles for the SRE USB system (Section 7.2.3)

Augmented state matrix (Section 8.4)

Transformed time variable (Section 3.6)

State vector

Vector of slow osculating orbital elements (Section 5.8)

Vector of the dependent variables and its value at time tl,

respectively, in the Runge-Kutta integrators (Section 6.2)

Accelerations in the backpoints table (Section 6.1.5)

Epoch values of the solve-for or expanded state vector of

p-dimension: the vector _i is the best estimate of X- obtained

on the ith iteration; the vector X-i÷l is the reference solution on

the i th iteration; the vector _-0 is the a priori estimate of the

reference state (Chapter 8)

Inertial Cartesian components of spacecraft position in the

true of date coordinate system

Axes of the rotating libration point coordinate system (Sec-

tion 3.3.14)

Rate of change of the libration coordinate axes (Sec-

tion 3.3.14)

Rectangular Cartesian components of spacecraft position in

body-fixed (rotating) coordinates of the principal gravitating

body

Components of spacecraft position in the pseudo body-fixed

coordinate system (Section 3.3.2)

Inertial components of spacecraft position in the mean of date

coordinate system (Section 3.2.1)

Components of spacecraft position in the equinoctial coordi-

nate system (Section 3.2.5)

Components of the space coordinates (Appendix C)
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rj )

 j(to)

Xlp, Ylp, Zlp

Xlt, YlI, Zlt

Xn

Xop, Yop, Zop

Xp, yp

Xp, yp, Zp

A A A

Xp, yp, Zp

# t

Xs, Zs

Xs, Ys, zs

A A A
XT' YT, ZT

Xv, Yv, zv

Instantaneous state vectors of node j at time tag tj (Sec-

tion 7.3.5)

State vector (position and velocity) of node j at epoch to (Sec-

tion 7.3.5)

Components of spacecraft position in geocentric local plane

coordinates (up, east, north) (Section 3.2.3)

Components of spacecraft position in topocentric local tangent

coordinates (east, north, up) (Section 3.2.4)

Quantity denoting the Cowell position integrator for linear sys-
tems

Components of spacecraft position in geocentric orbit plane

coordinates (Sections 3.2.5 and 7.7.4)

Instantaneous angular coordinates of the polar motion (Sec-

tion 3.3.2.2) (see Figure 3-11)

Keplerian Cartesian components of spacecraft position in or-

bital coordinates, i.e., x v is directed toward perigee and z v in

the direction of the angular momentum (Sections 3.2.5 and

5.7)

Keplerian unit vectors (Sections 3.2.5 and 5.7)

Spacecraft orbit frame unit vectors (Section 4.8.4)

Components used in the two-dimensional analysis of an ellip-

soid to indicate that the y component is omitted (Sec-

tion 3.3.6)

Coordinates of a point s on the surface of an ellipsoidal

planet expressed in body-centered rotating coordinates (Sec-

tion 3.3.6)

TDRS track-oriented coordinate axes (Section 7.3.7)

Components of spacecraft position in the vehicle-fixed coordi-

nate system (Sections 3.2.7 and 4.7.1)
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Y

Yig

YT, PT

Y(t), _" (t)

Y(tj+l I tj)

Ym(t)

Y

Yb

t

Yb

YE

Yep

Yi

Y_p

Ylt

See X, Y, Z above

Yaw angle (Section 4.8.4)

Dependent variable vector in the second-order linear differen-

tial system of variational equations (Sections 4.1 and 6.1.4)

Yaw angle at ignition (Section 4.8.4)

Yaw angle rate (assumed constant) (Section 4.8.4)

Yaw and pitch angles, respectively, defining the thrust direc-

tion (Section 4.8)

Matrices obtained by integrating the variational equations

(Section 4.1)

Matrices of position partial derivatives and velocity partial de-

rivatives, respectively (Section 6.1.4)

Predicted measurement residual uncertainty (Section 8.4)

Linear combination of functions used in the interpolation of

ephemeris data (Section 3.6)

See x, y, z above

Fast osculating orbital elements (Section 5.8)

m-dimensional vector of measurement data (Chapter 8)

t t t

See Xb, Yb, zb above

I t t

See Xb, Yb, zb above

See XE, YE, ZE above

See Xep, Yep, Zep above

JPL ephemeris function value at time ti (Section 3.6)

See xlp, Ylp, Zip above

See Xlt, Ylt, zlt above
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YlTI

YP

Y._

Y_

Yop

Z

Z,m, Zn

Z

Zb

t

Zb

ZE

Zep

Zi

Zlp

Zlt

Zop

Zp

Half-thickness of the bottomside layer of the electron density

profile (Section 7.6)

See Xp, yp, Zp above

See Xs, Ys, Zs above

See xv, Yv, zv above

See Xop , Yop, Zop above

See X, Y, Z above

Altitude (Section 4.5.4)

Zenith calibration constants (Appendix A)

See x, y, z above

Nondimensional altitude used in the Chapman profile for elec-

tron density (Sections 7.6.2 and 7.6.3)

q-dimensional consider vector containing as components all

model parameters whose values are known with limited cer-

tainty but are not to be estimated (Chapter 8)

See Xb, Yb, Zb above

I r t

See Xb, Yb, Zb above

See XE, YE, ZE above

See Xep , Yep, Zep above

Zb-axis intercept of the vector normal to the surface of the

ellipsoidal planet model (Section 3.3.6)

See Xlp, Ylp, Zlp above

See x_t, Ylt, Zlt above

See Xop, Yop, Zop above

See xp, yp, Zp above
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Z$

Zv

Zo

Greek Symbols

a

A
a

ag

aOM

ai

as

aT

See xs, Ys, zs above

See Xv, Yv, zv above

A priori value of Z (Chapter 8)

Right ascension of the spacecraft relative to the true of date

system

Rotation matrix (Section 3.3.1.1)

Right ascension in spherical coordinates (Section 3.3.13)

Geocentric angle between the ground station and the sub-

ionospheric point (Section 7.6.3)

Uniformation constant (Appendix B)

Unit vector normal to the orbit plane (Section 4.9)

Slow and fast elements, respectively (Section 5.7)

Four-vectors (Section 5.4 and Appendix B)

True of date right ascension of Greenwich (also called the

true Greenwich sidereal time or true Greenwich hour angle)

(Sections 3 and 9)

Mean Greenwich sidereal time, i.e., right ascension of the fic-

titious mean Sun minus 12 hours plus the time of day in UT1

(Section 3.3.2.1)

Thermal diffusion coefficient (Section 4.5.4) (see Table 4-2)

DS elements vector (Section 5.5)

Coefficients of the Adams-Cowell predictor formulas (ordi-

nate form) (Chapter 6)

Right ascension of the Sun (Section 4.5.6)

Right ascension of the spacecraft's thrust axis (Section 4.8.1)
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5v

A

F

Y

A
Y

Y_

t st

Yi,Yi,Yi

Yj

7'2,}'3,7'4,7'5

t t e t

Y2,Y3,Y4, Y5

A

A R,

Topocentricrightascensionof the spacecraft(Section9.2)

Right ascensionof the spacecraft'slongitudinalaxis (Section

3.3.12)

Estimated thrust variation coefficient (Section 4.8.3)

Coefficients of polynomial characterizing the thrust axis right

ascension (Section 4.8.1)

DS elements vector (Section 5.5)

Flight path angle measured from the geocentric position vec-

tor to the velocity vector (Section 3.2.3)

Unit vector lying in the orbit plane (Section 4.9)

Flight path angle (Section 3.3.13)

Vector containing powers of the thrust burning time (Sec-
tion 4.8.2)

Normal gravity at a point (Section 7.4)

A

Unit vector forming right-hand system with _ and fl (Sec-
tion 4.9)

Normal equatorial gravity (Section 7.4)

Coefficients in the Adams-Cowell formulas (Section 6.1.1)

Ground elapsed time from TLO for the selected Delta Inertial

Guidance System (DIGS) station (Section 9.1)

Auxiliary parameters (Section 5.9)

Auxiliary parameters (Section 5.9)

Auxiliary angle used in determining the transformation from

true of date selenocentric to selenographic coordinates (Sec-
tion 3.3.3)

Correction vectors used in the determination of refraction cor-

rection (Section 7.6.3)
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AE

Afcesium

AH

_D_O,_LIVID_G

(A lOglo 0)O

(A lOglo O)He

(A loglo _))LT

(A 1Oglo _))SA

AM

Ar

Ar, A/"

Ar

Ara

AS

A
As, As

AT, ATi

ATo_

AT_gs8

Atmospheric elevation correction (Section 7.6.3)

Correction to the frequency feesium = 9,192,631,770 cycles of

cesium per ephemeris second (Section 3.5.1)

Correction to the mean right ascension to account for nuta-

tion (Section 3.3.2.1)

First-order correction to the mean anomaly (Sections 5.9 and

4.9), respectively

Geomagnetic activity correction to the standard density calcu-

lation (Section 4.5.4)

Density correction for the seasonal latitudinal variation of he-

lium (Section 4.5.4)

Density correction for the seasonal latitude variation of the

lower thermosphere (Section 4.5.4)

Semiannual atmospheric density variation (Section 4.5.4)

Correction to the maneuver parameters (Section 4.8.4)

Radius of the error hypersphere (Section 8.5.2)

Range and range-rate antenna mount corrections (Sec-

tion 7.6.3)

Velocity difference (Section 4.8.4)

Antenna offset vector (Section 7.7.4)

Miss vector (Section 4.8.4)

A

First six components of Ax and Ax (Chapter 8)

Time differences (Section 9.2.3)

Correction to the exothermic temperature (Section 4.5.4)

Difference ET--UT2 on January 1, 1958, 0h0m0 s UT2, minus

the periodic terms in the ET-to-A.1 transformation (Sec-

tion 3.5.1)
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At

At_

Atd

Atm_x

Atv

AtR

AtRD

AtR R

An

A

Au

A_T,

AI'vi

Axi

A

Ax i

A

AXi+I ,n

Step size

Measured round-trip time delay (in seconds) at time tag T
between corresponding chips of the reference and received PN

code (Section A.8.2)

Counter delay in the phase readout digitizing equipment (Ap-
pendix A)

Correction to the sequencer delay (Appendix A)

Maximum value for the integration step (Section 9.1)

Sequencer delay (Appendix A)

Two-way light time corresponding to the range measurement
(Section A.1)

Reciprocal of the data recording rate (Section A.1)

Doppler count time interval (Chapter 7 and Appendices A
and C)

Perturbations about ff (Section 8.2.3)

Best estimate of A-_ in a weighted least-squares sense (Chap-
ter 8)

Correction vectors used in the determination of refraction cor-

rection (Section 7.6.3)

ith variate difference of order P (Section 8.7.4)

Perturbation in the solve-for vector about the ith iterated esti-
A

mate, x i (Section 8.2)

Best estimate of _- in a weighted least-squares sense (Sec-

tion 8.2)

Deviation of the a priori from the i_h iterated estimate of x-

(Section 8.2)

State correction computed in the n th residual editing iteration

(Section 8.6.2)
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Ayi

Ay(tj)

Ay*(tj)

Az

Az i

A2

AVdo(T)

AO

AO

Aoc

Aot(T)

AT

6

Vector of deviation between the actual measurements and the

ith iterated estimate of the measurements. (Note: _- = A)7o)

(Sections 8.1 and 8.2)

Measurement residual for the jth measurement (Section 8.6.2)

Predicted weighted measurement residual (Section 8.6.2)

Perturbations of the consider vector _- about its a priori value

(Section 8.2)

Components of transformed state vector which constitute the

coordinates of a hypersphere (Section 8.5.2)

Difference between the adopted and true longitude (Sec-

tion 3.3.2.2)

Measured differenced one-way Doppler measurement at time

tag T (Section A.8.2)

Atmospheric range correction (Section 7.6.3)

Atmospheric range-rate correction (Section 7.6.3)

Density correction factor (Section 4.5.5)

Computed range difference (Appendix C)

Difference between the full long-path range at times T and

T - AT (Sections 7.3.4)

Difference between the full short-path range at times T and

T- AT (Sections 7.3.4)

Spacecraft transponder time delay (Chapter 7 and Appen-

dix A)

Difference between the adopted and true latitude (Sec-

tion 3.3.2.2)

Declination angle measured north from the equator

Declination in spherical coordinates (Section 3.1.13)
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(Cont'd)

_U

6_

(_T

5v

_0, "") _4

_rl, (_r2

&

(SPV_

_a, (}_, a_,

Quantity used in determining the atmospheric refraction cor-

rection to the elevation angle (Section 7.6.4)

Dirac delta function (Section 8.4)

Coefficients of the ordinate form of the Adams-Cowell formu-

las (Section 6.1.6)

Polynomial coefficients in the density calculation (Sec-

tion 4.5.4)

Kronecker delta function (Sections 4.8.2 and 8.4)

Error coefficients (Section 6.2.2)

Declination of the Sun

Declination of the spacecraft's thrust axis (Section 4.8.1)

Topocentric declination of the spacecraft (Section 9.2)

Declination of the spacecraft's longitudinal axis (Sec-

tion 3.3.12)

Coefficients of polynomial characterizing the thrust axis decli-

nation (Section 4.8.1)

Perturbations in the orbit inclination, right ascension of the

ascending node, and argument of perigee, respectively (Sec-

tion 4.9)

Thrust components in terms of position and velocity changes,

respectively, in a geocentric body-fixed coordinate system ref-

erenced to the launch pad at time tj, extracted from the

launch telemetry data (Section 9.1)

Corrections to the assumed radius magnitudes (Section 9.2.3)

Timing bias in the measurement data (Sections 7.1 and 8.2)

i th divided difference of order P (Section 8.7.4)

A A
Rotational perturbations around _z, fl, and y, respectively

(Section 4.9)
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Era,Et

En

Et

E()

P

0

A

Difference between the true and mean obliquity (Sec-

tion 3.3.1.3)

Nutation in longitude (Section 3.3.1.3)

Small parameter proportional to the perturbing acceleration

(Section 5.8)

Tolerance (Sections 7.3.2 and 8.6.2)

Improvement ratio criterion specified for least-squares itera-

tion convergence (Section 8.6.3)

First-order Gauss-Markov process representing the unmodeled

acceleration, au (Section 8.4.2)

Mean and true obliquity (Sections 3.3.1 and 3.3.2)

Local error of the numerical integration (Section 6.1.7)

See Em, Et above

Denotes the expected value

Precession angle (Section 3.3.1)

Surface reflectivity coefficient (Section 4.6)

Auxiliary parameter (Section 5.9)

Flight path angle (Section 4.9)

Auxiliary parameter (Section 5.9)

Transition matrix between perturbations in solve-for variables

and perturbations in consider variables (Section 8.2.3)

Orbital angle and mean orbital angle, respectively, measured

along the lunar equator from the descending node of the

Earth's orbit to the lunar prime meridian (Section 3.3.3)

Precession angle (Section 3.3.1)

Euler angle used in the transformation from selenocentric to

selenographic coordinates (Section 3.3.3)
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h

h, h i

hA, hT

hlag

hM

hp

,_r

Pd

Vd(T)

Longitude measured east from the prime meridian

Equinoctial and Herrick mean longitudes (Sections 3.2.6 and

3.3.9.1)

Number of full revolutions between consecutive measure-

ments (Section 9.2.3)

Adopted and instantaneous (true) longitudes, respectively

(Section 3.3.2.2)

Geographic east longitude measured positive west (Sec-

tion 3.3.13)

Selenographic longitude of the Earth (Section 4.4)

Lag angle between the Sun line and the apex of the diurnal

bulge (Section 4.5.6)

Geocentric mean longitude of the Moon (Section 3.3.3)

True right ascension of the Moon (Section 4.4)

Longitude of the magnetic north pole (Section 7.6)

Mean longitude for retrograde orbit (Section 3.3.11.1)

Longitude of the tracking station (Sections 3.3.7 and 9.2)

Gravitational parameter of the reference body, i.e., the prod-

uct of the universal gravitational parameter and the mass of

the body

Bank angle in spherical coordinates (Section 3.1.13)

Eclipse factor (Section 4.6.1)

Electromagnetic signal frequency (Section 7.6)

Bias frequency on the Doppler signal (Appendices A and C)

Doppler signal frequency (Appendices A and C)

Computed full Doppler measurement at time tag T (Sec-

tion 7.3.5)
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v o(T)

[Vdo(T)]oomp ,o

[Vdo(T)]reference

Vdo(Ti)

'V n

VL

vt

VR

1/R1, _R 2

V$

1_T

Vt, Fr

],t V

(V0)!

_p

Computed average Doppler shift tagged at time T (Sec-

tion 7.3.4)

Comparison one-way Doppler measurement (Section A.8.2)

Reference one-way Doppler measurement (Section A.8.2)

Measured Doppler shift (in hertz) at time tag Ti, averaged

over the time interval between Ti and Ti+l (Section A.8.2)

High frequency modulation (ranging) tone (Appendix A)

Low frequency modulation (ranging) tone (Appendix A)

Doppler-shifted carrier frequency via the long-trip path (Sec-

tion 7.3.4)

Signal frequency received at the ground station (Appendi-

ces A and C)

Reference frequency for the GRARR and ATSR range and

range-rate measurements (Appendices A and C)

Doppler-shifted pilot-tone frequency for the short-trip path

(Section 7.3.4)

Frequency of the signal transmitted at the tracking station

(Appendices A and C)

Frequencies of the transmitted and received signals (Appen-

dix C)

Frequency of the signal received at the spacecraft (Appendi-

ces A and C)

Unshifted carrier frequency via the long-trip path (Sec-

tion 7.3.4)

Unshifted pilot-tone frequency (Section 7.3.4)

Normalized time (Section 5.6)

Precession angle (Section 3.3.1)
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Q

Q,_,O

9A

Q_

Q_, Qb

_avg

OM

_M, _m

One-way range measurement from the tracking station to the

spacecraft (Chapters 3, 7, and Appendix A)

Planet's mass density (Section 4.3)

Atmospheric density (Section 4.5)

Average of the uplink and downlink propagation distances

(Section 7.2)

Oblate spherical coordinates (Section 5.12)

Computed range at time tag T (kilometers) (Section 7.3.2)

Range ambiguity interval (kilometers) (Section 7.3.2)

Atmospheric density (Section 4.5.2)

Range ambiguity numbers (Appendix A)

Average range rate over the uplink and downlink paths (Chap-

ter 7 and Appendices A and C)

Dynamic weighting factor (Appendix D)

Atmospheric constituent densities (Section 4.5.4)

Slant range from the tracking station to the spacecraft (Sec-

tion 9.2.2)

Correlation coefficient (Section 8.5)

Distance traversed by a tracking signal between nodes j and

j + 1 (Section 7.3)

Time rate of change of the long-trip full range (Section 7.3.4)

Measurement vector in station-centered topocentric local tan-

gent coordinates (Section 9.3)

Hayn's physical libration in the inclination of the mean lunar

equator (Section 3.3.3)

Maximum and minimum densities (Section 4.5.6)
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0s

OU, Od

eo(T)

01, 02, 03

01, O2, O3, O4;
01, 02, 03, 04

_)2

t7

(_E-1

tTM

Summed atmospheric density (Section 4.5.4)

Time rate of change of the short-trip full range (Section 7.3.4)

One-way range distance corresponding to the uplink and

downlink signal path (Section 7.2.3 and Appendix C)

Measured range at time tag T (kilometers) (Section 7.3.2)

Measured half-range at time tag T (kilometers) (Sec-

tion A.8.2)

Drag scale factor (Section 4.5.2)

Ranges from the first and second stations to the satellite in

VLBI tracking (Section 7.4)

Systematic error coefficients in the atmospheric density model

(Section 4.5)

Distances between nodes (Section 7.3.2)

Slant range (Section 9.2.3)

Sample standard deviation (Section 8.6.4)

Variance estimate for unedited differences on the (E-1) st

edit loop of the same order (Section 8.7.4)

ph-order final noise estimate (Section 8.7.4)

Variance of the measurement noise component ni (Chap-

ter 8)

Standard deviation of the kth measurement (Chapter 8)

A priori standard deviation of the noise on the k Ih measure-

ment (Section 8.1)

Standard deviation of the data reduction curve fit obtained

during preprocessing of the k th measurement (Section 8.1)

Hayn's physical libration in the mean right ascension of the

ascending node of the lunar orbit (Section 3.3.3)
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O'pD

al, ..., 0'6

1_'op!

_(Ti,to)

to)

_A, _T

DDNA noise estimate (Section 8.7.4)

Final variance for the pth-order noise estimate (Section 8.7.4)

Eigenvalues of Pax (Section 8.5)

Estimate of the variance of Ast (Section 8.2.3)

Estimate of the variance of Azi (Section 8.2.3)

Auxiliary angle used in the calculation of the uncorrected ex-

ospheric temperature (Section 4.5.4)

Time measured from effective ignition of the thruster (Sec-
tion 4.8.1)

Independent variable (time element) for the transformed time-

regularized system (Sections 5.4, 6.4, and Appendix B)

Runge-Kutta stepsize (Section 6.2.2)

Phase difference time interval in VLBI tracking (Section 7.4)

Optimum stepsize in the Hull Runge-Kutta 3(4+) integrator

(Section 6.2.2)

Hayn's physical libration in mean longitude (Section 3.3.3)

Perturbing energy (Section 5.5 and Appendix B)

State transition matrix (Sections 6.3, 7.3.3, and 7.3.5)

Augmented state transition matrix (Section 8.4)

Geodetic and geocentric latitudes, respectively (Chapters 3, 4,
and 7)

Geocentric and geodetic latitudes, respectively (Chapter 4)

State transition matrix relating state perturbations at time to

to state perturbations at time Ti (Chapter 8)

Transition matrix relating perturbations about _(t) at times t
and to (Chapter 8)

Latitude corresponding to the adopted and true poles, respec-
tively (Section 3.3.2.2)
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_E

SM

Sp

t

_T

_D

(2

_"_M

fl)

Selenographic latitude of the Earth (Section 4.4)

Geocentric latitude (declination) of the Moon (Section 4.4)

Geodetic latitude of the magnetic north pole (Section 7.6)

Geodetic and geocentric latitude of the tracking station (Sec-

tions 3.3.7 and 9.2)

See _bA, q_r above

Roll angle of the spacecraft (Section 3.3.12)

Gravitational potential (Sections 4.3.1 and 4.4)

Angle between the satellite position vector and the apex of the

diurnal bulge (Section 4.5.6)

Generalized true anomaly (Section 5.5)

Geopotential function (sum of the normal geopotential _PN

and the disturbing potential _PD) (Section 7.4)

Abbreviation for the covariance matrix of the estimated state

in the absence of consider variables (Section 8.3)

Disturbing potential (Section 7.4)

Normal geopotential (Section 7.4)

Right ascension of the orbital ascending node

Skew matrix whose elements are components of the Earth's

rotation vector (Section 4.5.3)

Euler angle used in transformation from selenocentric to

selenographic coordinates (Section 3.3.3)

Mean right ascension of the ascending node of the lunar orbit

(Section 3.3.3)

Argument of perigee of the satellite orbit

Frequency related to the negative of the total energy (Sec-

tion 5.4 and Appendix B)

Rotation rate of the Earth (Sections 3.3.2.1 and 7.4)

GL-53



m

tO

tOM

Subscripts

()A

().

().o

( )_vg

( )B

( )b

( )c

()o

( )D

( )d

( )E

( )E-w

()o

( )ep

( )F

( )_M

( )f

()OM

Angular rotation vector of the Earth expressed in mean of

B1950.0 or J2000.0 coordinates (Section 4.5.2)

State noise (Chapter 8)

Moon's argument of perigee (Section 3.3.3)

Adopted quantity; averaged quantity; or model replacement

Apofocus; atmospheric; or apparent

Attitude control

Average

Spacecraft axis

Body-centered; body-fixed; burn; or bias

Correction; or coarse baseline (Minitrack)

Computed; cylinder; or minimum exospheric

Drag; aerodynamic; deviation; or disturbing

Doppler; or downlink

Earth; or mean of date

East-west

Equatorial; ephemeris; end plate; or electron density

Equinoctial system

Frame; force; or fine baseline (Minitrack)

Midframe

Final

Greenwich mean value
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( h

(),

( ),o

( )i

( )m

( )j

( )_

()k

( ),.

( ),p

( )i,

( )M

( )Mm

()m

( )N

( )NS

( )N-S

( )of

( )op

( )PM

( )p

Geomagnetic; Greenwich true value; or group

Ionospheric

Mutual nonspherical gravitational attraction of Earth and

Moon

Initial node of the measurement (Section 7.3.3)

Counter input

Reference (central) body

Keplerian

Body k

Four-way ranging; or low frequency

Local plane

Local tangent

Moon; maximum; or medium baseline (Minitrack)

Midpoint

Minimum; maximum (Chapter 7); mean (Section 3.3.3); or

middle point

Normal

Nonspherical

North-south

Orbital frame

Orbit plane

Point-mass

Polar; perifocus; precession; solar paddle; geomagnetic;

planetary; orbitalrectangular coordinates; or phase
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( )_

( )RR

( )RT

( )r

( ),ol

( )s

( )_

( )sR

()_

( )T

)TAC

(),

().

(),,

()x

( )x, ( )y, ( )_

( )o

( )30

( )85

Ground receiver; or reference

Doppler count

Round -trip

Generalized receiver (Appendix C)

Relative to the atmosphere

Two-way ranging

Semiannual

Solar radiation

Tracking station; solar; sample; selenographic; surface;

spherical; or sea level

Ground transmitter; thrust; tropospheric; or true (instantane-

ous) pole

Attitude control system

Time; topside; topocentric; true (Section 3.3.3); or general-

ized transmitter (Appendix C)

Uplink

Spaceccraft; or vehicle fixed

Inflection point

Corresponding axis

Mean elements at epoch; Earth-centered; initial conditions; ac-

tual; or a priori (Chapter 8)

GRARR and SRE USB 30-foot antennas

SRE USB 85-foot antennas

Corrected exospheric
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Superscripts

( )ave

()°

( )d

( )h

()m

( )P

()s

()T

()"

Operational Symbols

V

()x()

() ()

E s

D

I

(')

(..)

(")

(-)

(_)

Average value

Corrected values

Day

Hour

Minute

Predicted values

Second

Transpose

Perturbed initial conditions (Section 5.7.3)

Linear gradient; or backward difference operator

Vector cross product

Vector dot product

Shifting operator (Section 6.1)

Differential operator (Section 6.1)

Identity operator

First derivative with respect to time

Second derivative with respect to time

Unit vector

Vector

Absolute phase difference (Section A.4)
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e( )

coy( )

det

var( )

()'

()"

()"

Y( )

Expected value (expectation operator)

Covariance

Determinant

Variance

First derivative with respect to the variable s (Chapter 5)

Second derivative with respect to the variable s (Chapter 5)

Perturbed initial conditions (Section 5.7.3)

Function (Section 3.3.8)
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INDEX

The index given on the following pages consists of an alphabetical list of significant topics

contained in this document. Cross-referencing is used where appropriate. The notation

appearing in parentheses after certain topics refers to the section or chapter primarily

concerned with that topic. The hyphenated numbers refer to the pages where the specified

topic is mentioned. A page number immediately following a section or chapter number

indicates the beginning page of that section or chapter. For example, the following entry

Mean of estimate, (8.2.1) 8-6, 8-52

indicates that the "mean of estimate" is discussed in Section 8.2.1, which begins on

page 8-6, and that it is also mentioned on page 8-52.

I-1



A
Acceleration

of Earth due to oblateness of Earth and

Moon, 4-22, 4-23
of Moon due to oblateness of Earth and

Moon, 4-22, 4-23

unknown, 8-43

unmodeled, 8-36--8-41

Adams integrationformulas, 5-8, 5-9, 6-I, 6-2

Adams-Bashforth formula, 6-I

Adams-Cowell integrationformulas, (6.I.I) 6-2,

(6.1.3) 6-9

Adams-Moulton predictor-correctorcoefficients,
6-7

Aerodynamic force coefficients,4-28, 4-29

(Table 4-I)

cylindricalspacecraft,4-27--4-31

cylindricalspacecraftwith solarpaddies, 4-31,
4-32

sphericalspacecraft,4-28--4-30

Aerodynamic forces,(4.5) 4-25

aerodynamic force modeling, (4.5.2) 4-27

associatedpartialderivatives,(4.5.3)4-32

Algorithm, batch estimator,(8.2) 8-3

Analytic partialderivatives,(4.9) 4-86

conversion of differentialcorrections,

(4.9.3)4-94

definition of perturbation variables,
(4.9.1) 4-86

state transition matrix elements, (4.9.2) 4-90

Angles only early orbit methods, (9.2) 9-4

Antenna mount corrections, ground,
(7.7.2) 7-96

Antenna offset corrections, spacecraft, (7.7.4)
7-97

Applications Technology Satellite Range and
Range-Rate (ATSR) System. See Goddard

Range and Range-Rate (GRARR) System

Atmospheric density models, (4.5) 4-25
Jacchia-Roberts model, (4.5.4) 4-35

low-akitude model, (4.5.8) 4-64
modified Harris-Priester model, (4.5.6) 4-57

Atmospheric effects, (7.6) 7-60

Chapman profile refraction corrections,
(7.6.3) 7-70

Doppler corrections, 7-77--7-83
elevation angle-dependent corrections,

7-74--7-77

range correction, 7-70--7-74

ionosphere models, (7.6.2) 7-62
electron density profile parameters,

7-67--7-70

empirical worldwide profile, 7-63--7-66
modified Chapman profile, 7-63, 7-64

segmented profile refraction corrections,
(7.6.4) 7-83

ionospheric correction, 7-88--7-95
tropospheric correction, 7-83--7-87

troposphere model, (7.6.1) 7-61

ATSR/GRARR tracking systems, (A. 1) A-l,
(7.2) 7-4, 7-2

Attitude control effects, (4.7) 4-67, 2-17

partial derivatives, (4.7.2) 4-69

perturbation model, (4.7.1) 4-68

Averaging formulation, (5.8) 5-38
equinoctial VOP formulation, (5.8.3) 5-41
Keplerian formulation, (5.8.4) 5-41

B

Batch estimator algorithm, (8.2) 8-3

Besselian solar year, 3-1

Bilateration Ranging Transponder System
(BRTS), 7-2, A-31, A-32, A-34

Bouguer's formula, 7-74

Brouwer drag parameters, 4-90

Brouwer theory, (5.9) 5-43, 2-5, 5-1, 5-5, 5-41,
5-54, 5-63--5-65

Brouwer-Lyddane theory (formulation),
(5.10) 5-54, 4-86, 4-89, 5-4

BRTS. See Bilateration Ranging Transponder
System

C

C-band radar tracking systems, (7.2) 7-4, 7-3,
(A.2) A-8

early orbit data, 9-44, 9-45
functional description, (A.2.1) A-9
preprocessing description, (A.2.2) A-9

range and azimuth/elevation data, 2-9

Canonical variables, 5-1, 5-16
force, 5-18

Cassini's laws, 3-32, 3-37

Celestial equator, 3-2

Celestial sphere, 3-2

Chapman profile, 7-63, 7-64, 7-70
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Chapman profile refraction corrections,
(7.6.3) 7-70

Doppler corrections, 7-77--7-83

elevation-angle-dependent corrections,
7-74--7-77

ionospheric model for, 7-63, 7-64

range correction, 7-70--7-74

Chebyshev series, (5.6) 5-26, 3-84

Consider variables, 2-12

a priori, 8-4, 8-9, 8-10, 8-21

uncertainty, 8-53

Consider vector, 8-4, 8-10, 8-12, 8-24

Convergence criteria, 8-66

Coordinate systems (Chapter 3)

body-centered equatorial inertial, (3.2.1) 3-3

rectangular Cartesian, 3-5

spherical polar, 3-4
body-centered rotating, (3.2.2) 3-5

geodetic, 3-6

rectangular Cartesian, 3-5

spherical polar, 3-5

geocentric equatorial inertial (GCI), 3-4

local plane, (3.2.3) 3-6
rectangular Cartesian, 3-6

spherical velocity, 3-7

orbit plane, (3.2.5) 3-8

equinoctial, 3-9

Keplerian, 3-9

rectangular Cartesian, 3-8

orbital elements, (3.2.6) 3-9

equinoctial, 3-10
Herrick, 3-11

Keplerian, 3-10
selenocentric, (3.3.3) 3-31

selenographic, (3.3.3) 3-31

topocentric local tangent, (3.2.4) 3-7
rectangular Cartesian, 3-7

spherical position, 3-8
vehicle-fixed, (3.2.7) 3-11

rectangular Cartesian, 3-12

Coordinate time, C-6, C-10, C-13

Coordinate time derivatives, C-10

Coordinate transformations, (3.3) 3-12, 2-17

body-centered true of date to orbit plane,
(3.3.5) 3-46

body-fixed to geographic, (3.3.6) 3-47
Earth-fixed to geodetic, 3-50

geodetic to Earth-fixed, 3-49

Earth-fixed to topocentric local tangent,
(3.3.7) 3-53

equinoctial to Cartesian, (3.3.9) 3-65
Cartesian coordinates to equinoctial ele-

ments, 3-66

equinoctial elements to Cartesian coordi-
nates, 3-65

geographic to spherical, (3.3.13) 3-73
Herrick to Cartesian, (3.3.10) 3-68

Cartesian coordinates to Herrick elements,
3-69

Herrick elements to Cartesian coordinates,
3-68

inertial to rotating libration, (3.3.14) 3-75
inertial to true of date, (3.3.1) 3-13

B1950.0 inertial to mean of date, 3-17-3-19
J2000.0 inertial to mean of date, 3-14-3-17
mean of date to true of date, 3-19-3-23

Keplerian to Cartesian, (3.3.8) 3-54
body-centered true of date to Keplerian ele-

ments, 3-61
Keplerian elements to body-centered true of

date, 3-55

partial derivatives, 3-58, 3-59
Keplerian to equinoctial and Herrick, (3.3.11)

3-70

Keplerian to equinoctial elements, 3-71
Keplerian to Herrick elements, 3-71

selenocentric true of date to selenographic,
(3.3.3) 3-31

spherical to Cartesian, (3.3.4) 3-40
Cartesian position and velocity to spherical,

3-42

spherical position and velocity to Cartesian,
3-40

true of date to body-fixed, (3.3.2) 3-23

pseudo body-fixed to body-fixed, 3-26
true of date to pseudo body-fixed, 3-24

vehicle-fixed to body-centered true of date,
(3.3.12) 3-72

Correlation, 8-9
between state and uncertain model parame-

ters, 8-16

of errors in a priori solve-for and consider
variables, 8-9

of errors in solve-for and consider variables,

8-9, 8-10
of estimate and consider variables, 8-17
of solve-for and consider variables, timewise

propagation, 8-21, 8-22

Covariance
of estimate, (8.2.1) 8-6, 8-20
of state noise, 8-30, 8-31, 8-42

Covariance matrix

interpretation, (8.5) 8-52
augmented vector and covariance, (8.5.1)

8-52
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correlation coefficient, (8.5.4) 8-57

hyperellipse probabilities, (8.5.2) 8-53
hyperrectangle probabilities, (8.5.3) 8-55

of error, 8-3, 8-10, 8-27, 8-29, 8-42

augmented, 8-45, 8-52

derivation of, (E.1) E-1
of state, 8-16, 8-49

propagation of, 8-15, 8-22

transformations, (8.2.3) 8-13

Cowell method, (5.2) 5-5, 4-1, 5-1, 5-3, 5-8,
5-9, 5-26, 6-1, 6-2, 6-11, 6-20, 6-34

time-regularized, (5.3) 5-8, 5-3, 5-5, 5-6, 6-1

Critical frequency, 7-67

D

Data Management Program, (2.1.8) 2-3

Data Simulation Program, (2.1.6) 2-2

Delaunay elements, (5.5) 5-16, 5-43, 5-44, 5-63

Delaunay-Similar (DS) formulation, (5.5) 5-16,
2-8, 5-3

Density corrections, 4-36, 4-38, 4-39

geomagnetic activity (effect), 4-36-4-38, 4-51
seasonal latitudinal, 4-39, 4-49, 4-51, 4-57
seasonal latitudinal, helium, 4-39
semiannual variation, 4-39, 4-51, 4-57

Differential correction process, 4-83-4-86, 4-94,
7-1, 7-3, 9-37, 9-38-9-44

Differential Correction Program, (2.1.1) 2-1
a priori input, 8-17, 8-18

computational procedure, (8.2.4) 8-16
data management, 8-17, 8-18

estimation computation, 8-19
inner processing loop, 8-17, 8-19

outer iteration loop, 8-17-8-19
residual editing algorithms, (8.6.2) 8-61

termination of outer iteration loop, 8-19, 8-66

Differential equations
class I, 5-2, 5-8, 5-9, 5-26, 6-1, 6-2

class II, 5-2, 5-8, 5-9, 6-1, 6-2

Direction cosines, Minitrack, 7-3, 7-11

Dispersion, 8-10

See also measurement uncertainty

Diurnal bulge, 4-57, 4-60, 4-61

Divergence, filter, 8-35

DODS variables, 4-2, 4-86--4-94, 6-12

Doppler corrections due to atmospheric refrac-
tion, 7-77-7-83

Doppler cycle count, 7-15, 7-16, A-6,
A-II-A-13

destruct,C-7

nondestruct, A-12, A-35, C-7

Doppler measurements, (7.3) 7-18, 2-11,
7-18-7-22, 7-77, A-2, A-33-A-37

Doppler frequency shift,relativistic,C-3, C-5,
C-7, C-12

Double R-Iterationmethod, early orbit,
(9.2.3)9-19, 2-2, 2-13, 9-1, 9-4

computing orbitparameters, 9-26-9-34

determining computed orbit accuracy,
9-34-9-36

initiating differential correction, 9-37-9-44

preliminary orbit search, 9-19-9-26

Dynamic model compensation (8.4.2) 8-36
advantages of, 8-36

procedure, 8-42

Dynamic stability, 5-4

Dynamic weighting factor, D-l, D-2

Dynamics, spacecraft, (2.3) 2-16

E

Early Orbit Determination Program, (2.1.5) 2-2

Early orbit methods (Chapter 9)
angles-only methods, (9.2) 9-4
double R-Iteration method, (9.2.3) 9-19, 2-2,

2-13, 9-1, 9-4

Gauss method, (9.2.2) 9-9, 2-2, 9-1, 9-4,
9-19, 9-31

range and Angles method, (9.3) 9-44, 2-2,
9-1

transformation of topocentric gimbal angles to
inertial coordinates, (9.2.1) 9-5

Earth-Moon system, (4.4) 4-21

Editing of measurement residuals, (8.6.2) 8-61

Electron density profile, 7-62-7-67, 7-70, 7-88,
7-89

Electron density profile parameters, 7-67-7-70

Element sets

Brouwer mean, 5-47

Delaunay-Similar, (5.5) 5-16, 5-3
equinoctial, (5.7.2) 5-33, 5-3, 5-31
Keplerian, (5.7.1) 5-31, 5-3, 5-32
Kustaanheimo-Stiefel, 5-3

rectangular, (5.7.3) 5-34, 5-3, 5-31

Encke method, 5-63
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Ephemeris Comparison Program, (2.1.3) 2-2

Ephemeris data, 3-85--3-88

polynomial representation of, (3.6) 3-84

Ephemeris Generation Program, (2.1.2) 2-2

Equations of motion, 6-1, 6-2, 6-7, 6-9, 6-14,
6-15, 6-20, 6-22, 6-23, 6-25, 6-26, 6-27,
6-34, 8-36

Error analysis
application, (8.3) 8-20

problems, 8-21

Error Analysis Program, (2.1.7) 2-3

Error control, (6.1.7) 6-20

Estimate

a priori, 8-2
bias, 8-6

classical equation for best, 8-3
covariance of error, 8-8, 8-27

mean, 8-8

minimum variance, 8-29
state correction, 8-27

Estimation (Chapter 8)

batch estimator algorithm, (8.2) 8-3
covariance matrix interpretation, (8.5) 8-52

error analysis application, (8.3) 8-20
estimation-related techniques (8.6) 8-58

problem description, (8.1) 8-1
sequential, (8.4) 8-25, (Appendix E) E-1

Statistical Output Report (SOR) modeling,
(8.7) 8-69

Estimation model, (7.8) 7-98

Estimator

advantage of recursive, 8-32

algorithm, 9-1
gain matrix, 8-9

Kalman minimum variance, 8-25

sequential weighted least squares, 8-25

weighted least squares, 8-1, 8-20

weighted least-squares variation
with respect to consider parameters, 8-23

with respect to dynamic parameters, 8-23

Expected value of deviation, 8-6
of linearized measurement residuals, 8-7

F

Fast elements, 5-16, 5-31, 5-39, 5-41

Figure of the Earth, 3-47-3-49

Filter

Extended Kalman, (8.4) 8-25, 2-12
derivation of, (8.4.1) 8-25

nonupdated reference trajectory, 8-32

prediction formulas of, 8-30
update equations of, 8-29
updated reference trajectory, 8-32

Jazwinski (statistical adaptive filtering),
(8.4.3) 8-42, 8-36

derivation of, 8-45

prediction equations, 8-49

update equations, 8-49

Filter Program, (2.1.4) 2-2

a priori input, 8-50, 8-51
computational procedure, (8.4.4) 8-49
data management, 8-50, 8-51

data set loop, 8-52
processing loop, 8-50

Filtering
dynamic model compensation, (8.4.2) 8-36
statistical adaptive, (8.4.3) 8-42

Flight sectioning, 2-17

G
Gain matrix, 8-9, 8-29, 8-34, 8-42, 8-46

Gauss method, early orbit, (9.2.2) 9-9, 2-2,
2-13, 9-1, 9-19, 9-31

Gaussian planetary equations, 5-32

Gaussian VOP formulation, (5.7) 5-30, 5-39

General Perturbation Methods, 2-5, 5-1, 5-4

Geoid, 7-51--7-57

Geoidal undulation, 7-52, 7-54, 7-58

Gibbs method, 9-9, 9-15, 9-16

Gimbal angles, 2-9, 7-3, 7-7-7-10, 9-5, 9-6,
A-2, A-5

Global iteration, 8-33

Goddard Range and Range-Rate (GRARR) and
ATSR systems, (A.1) A-l, C-12, C-15

data smoothing, A-8
early orbit data, 9-44
functional description, (A. 1.1) A-1

gimbal angles, A-5
preprocessing description, (A. 1.2) A-3

range computation, A-5, A-6
range-rate computation, A-6-A-8

GRARR and ATSR tracking systems, (A.1) A-l,
(7.2) 7-4, 2-9, 7-2

Greenwich hour angle, 3-24, 3-26, 3-74,
3-78-3-80, 9-2, 9-3
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Greenwich Mean Time (GMT), 3-80

Ground antenna mount corrections,
(7.7.2) 7-96

GTDS overview (Chapter 2)

GTDS programs, (2.1) 2-1

Data Management, (2.1.8) 2-3
Data Simulation, (2.1.6) 2-2, 2-9, 2-15

Differential Correction, (2.1.1) 2-1, 2-3, 2-9,
2-15, 2-16

Early Orbit Determination, (2.1.5) 2-2

Ephemeris Comparison, (2.1.3) 2-2
Ephemeris Generation, (2.1.2) 2-2, 2-5, 2-15

Error Analysis, (2.1.7) 2-3, 2-16
Filter, (2.1.4) 2-2

GTDS system capabilities, (2.2) 2-3
data simulation, 2-10

differential correction, 2-3, 2-4

early orbit determination, (2.2.4) 2-13

error analysis, 2-13, 2-14
estimation techniques, (2.2.3) 2-12
measurement modeling, (2.2.2) 2-8

data preprocessing, 2-9
measurement models, 2-11

measurement types, 2-9
optional modes of operation, (2.2.6) 2-15

Statistical Output Report modeling,
(2.2.5) 2-13

trajectory (ephemeris) generation, (2.2.1) 2-5

H

Hamilton-Jacobi differential equations, 5-1, 5-64

Hamiltonian, 5-17, 5-18

Harris-Priester atmospheric density model
(modified), (4.5.6) 4-57, 4-27

partial derivatives, (4.5.7) 4-62

Hayn's physical librations, 3-38, 3-39

Herrick elements, 3-70-3-72

Index of refraction, 7-61, 7-62, 7-70

Indirect oblation perturbation model, (4.4) 4-21

Insertion vector, 9-1, 9-2

Intermediate Orbit formulation, (5.11) 5-63,
2-8, 5-3, 5-4

Introduction, (Chapter 1) 1-1

Ionospheric models, (7.6.2) 7-62

Ionospheric refraction corrections, 7-88-7-95

d
Jacchia-Roberts atmospheric density model,

(4.5.4) 4-35, 4-27

partial derivatives, (4.5.5) 4-54

JPL ephemeris, 3-19, 3-22, 3-84

K
Kalman filter. See Filter, Extended Kalman

Kalman gain, 8-29
See also gain matrix

Kepler's equation, 5-33, 5-37, 5-47, 5-54, 5-62

KS matrix, 5-13

Kustaanheimo-Stiefel (KS) formulation,
(5.4) 5-9, 2-8, 5-3

L
Laplacian, 4-11

Laser tracking systems (STDN), (A.7) A-29,
(7.2) 7-4, 7-3

Launch and early orbit methods, (Chapter 9)

angles-only methods, (9.2) 9-4
launch and powered flight propagation tech-

niques, (9.1) 9-1
range and angles method, (9.3) 9-44

Launch Telemetry Acquisition System (LTAS)
vectors, 9-2, 9-4

Least squares, weighted, 8-1, 8-3, 8-5

Legendre functions, 4-11, 4-13

Libration coordinates, (3.3.14) 3-75

Libration of the Moon, 4-21

Libration point (L1), 3-75

Light-time correction, (7.7.1) 7-95

Linear gain, optimal, E-l, E-3

Linearity, 8-3, 8-5, 8-23, 8-33

Loss function, 8-1-8-6, 8-25

Low-altitude atmospheric density model, (4.5.8)
4-64

Lunisolar precession and nutation, 3-13, 4-21

M
Magnetic dip, 7-68, 7-69

Matrix identities (sequential estimation),
(Appendix E) E-1

Matrix inversion, (8.6.1) 8-59

Matrix of functional sensitivities, 8-23
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Matrix of partial derivatives, 8-2

Mean of estimate, (8.2.1) 8-6, 8-52

Measurement equation, nonlinear, 8-11

Measurement model, 8-43

Measurement model parameters, 7-2

Measurement models (Chapter 7)

additional corrections, (7.7) 7-95

atmospheric effects, (7.6) 7-60
estimation model, (7.8) 7-98

general description of, (7.1) 7-1
ground-based tracker models, (7.2) 7-4
radar altimeter model, (7.4) 7-51

Tracking and Data Relay Satellite System
(TDRSS) models, (7.3) 7-18

Very Long Baseline Interferometer model,
(7.5) 7-59

Measurement noise, 8-1, 8-7, 8-9, 8-10, 8-32,

8-41, 8-42, 8-43
covariance, 8-7

expected value, 8-7

Measurement partial derivatives, (8.2.2) 8-10

with respect to consider variables, 8-12

with respect to solve-for variables, 8-12

Measurement residuals, 8-5, 8-7, 8-67-8-69

Measurement types, 2-9

Measurement uncertainty, 8-10, 8-21, 8-29

Measurement vector, linearized, 8-2

Measurements modeled in GTDS, 7-2

Meridian

local, 3-3

prime, 3-3

Minimization, nonlinear, 8-2

Minitrack System, (A.4) A-13, (7.2) 7-4,. 7-3

ambiguity data, A- 19

ambiguity resolution, A-23
antenna field correction, A-25

conversion to direction cosines, A-25

data linearization and smoothing, A-19
direction cosine data, 2-9, 7-76, A-25

fine baseline data, A-20, A-21

functional description, (A.4.1) A-13

preprocessing description, (A.4.2) A-16

processor considerations, A-26
time adjustment and zenith calibration, A-21

Model parameters, uncertain, 8-15, 8-16

Multistep numerical integration methods, (6.1)
6-1

Adams-Cowell ordinate second sum formulas,

(6.1.1) 6-1
corrector-only algorithm for variational equa-

tions, (6.1.4) 6-11

corrector-only Cowell integration for linear
systems, (6.1.3) 6-9

local error control, (6.1.7) 6-20

multistep interpolation, (6.1.5) 6-15

predict-pseudocorrect algorithm for equations
of motion, (6.1.2) 6-2

starting procedure, (6.1.6) 6-19

N

Near-realtime operation, (2.4) 2-17

Newton-Raphson iteration, 5-37, 5-42, 7-24,
9-19, 9-39, 9-41, 9-43

Newtonian interpolation, 6-5

Nonspherical gravitational effects, (4.3) 4-10,
2-16

associated partial derivatives, (4.3.2) 4-16

perturbation model, (4.3.1) 4-10

Normal matrix, 8-3, 8-10, 8-12, 8-13, 8-24,
8-59, 8-61

Numerical averaging, (5.8) 5-38

Numerical integration methods (Chapter 6)
Adams-Cowell, 6-2

corrector-only, (6.1.3) 6-9

multistep methods, (6.1) 6-1

predict-pseudocorrect, (6.1.2) 6-7

predictor-corrector, 6-2--6-7
Runge-Kutta, (6.2) 6-22, 6-20

starting procedures, (6.1.6) 6-19

Numerical stability, 5-2, 5-3, 6-2, 6-7, 6-9

Nutation, 3-13, 3-19, 3-20

O

Obliquity of the ecliptic, 3-13, 3-19, 3-20

Optimal linear gain, derivation of, (E.2) E-3

Orbit estimation problem, 8-1, 8-25
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Orbit generationmethods (Chapter 5)

averaged equinoctial, (5.8.3) 5-41
averaged Keplerian, (5.8.4) 5-41

Brouwer, (5.9) 5-43

Brouwer-Lyddane, (5.10) 5-54
Chebyshev-P/card, (5.6) 5-26
Cowell, (5.2) 5-5

CoweIl, time regularized,(5.3) 5-8

Delaunay-Similar (D$), (5.5) 5-16

Gaussian VOP formulations, (5.7) 5-30
See also VOP

Intermediate orbit, (5.11) 5-63

Kustaanheirno-Stiefel (KS), (5.4) 5-9
vinti,(5.12)5-64
VOP--equinoctial, (5.7.2) 5-33

VOP--Keplerian, (5.7.1) 5-31

VOP--rectangular, (5.7.3)5-34

Orbit generators, characteristics of, 5-5--5-7

(Tables 5-1 and 5-2)

Orbital equations of motion (Chapter 5)

Origin of coordinates, 3-1, 3-2

Overview of GTDS (Chapter 2)

P

Partial derivatives

analytic, (4.9) 4-86

for aerodynamic force modeling, (4.5.3) 4-32
Keplerian to Cartesian, 3-58-3-60

mapping of, (6.3) 6-29
of acceleration due to attitude control effect,

(4.7.2) 4-69

of acceleration due to nonspherical gravita-
tional effects, (4.3.2) 4-16

of acceleration due to point-mass effects,
(4.2.2) 4-9

of acceleration due to solar radiation pressure,
(4.6.2) 4-67

of atmospheric density

Harris-Priester model, (4.5.7) 4-62

Jacchia-Roberts model, (4.5.5) 4-54
of Cartesian state with respect to DODS vari-

ables, 4-91-4-94

of expected range, 7-15

of geodetic coordinates with respect to body-
fixed coordinates, 3-53

of gimbal angles, 7-7-7-11

of indirect oblateness effects, 4-23, 4-24

of Keplerian with respect to Cartesian, 3-64
of Minitrack direction cosines, 7-11
of measurements, 7-3, 7-4

of measurements in local tangent coordinates,
7-6, 7-7

of nonspherical potential with respect to r, _,
and A, 4-12

of radar altimeter measurements, (7.4.3) 7-58
of range (expected)

in inertial (USB) coordinates, 7-15

in local tangent plane coordinates, 7-15

of range measurements with respect to solve-
for parameters (TDRSS), (7.3.3) 7-30

of range rate

average, 7-18
instantaneous method, 7-17
iterative method, 7-17

of thrust effects, (4.8.2) 4-73

of USB expected range, 7-15
of VLBI measurements, 7-60

Perturbation methods

general, 5-1
special, 5-1

Perturbation models (Chapter 4)

aerodynamic and atmospheric models,
(4.5) 4-25

indirect oblation perturbation model,
(4.4) 4-21

model parameters, 4-2, 4-3

n-point masses perturbation model, (4.2.1)
4-5

nonspherical gravitational effects, (4.3) 4-10
point-mass effects, (4.2) 4-5
total perturbation model, (4.1) 4-2

Perturbing accelerations (Chapter 4)
aerodynamic force effects, (4.5) 4-25

analytic partial derivatives, (4.9) 4-86
atmospheric effects, (4.5) 4-25
attitude control effects, (4.7) 4-67

Earth-Moon indirect oblation effects, (4.4)
4-21

nonspherical gravitational effects, (4.3) 4-10
point-mass effects, (4.2) 4-5

solar radiation pressure, (4.6) 4-64
thrust effects, (4.8) 4-70

Picard iteration method, (5.6) 5-26

Poincarg variables, 5-4, 5-54, 5-63

Point-mass effects, (4.2) 4-5

associated partial derivatives, (4.2.2) 4-9
n-point masses perturbation model,

(4.2.1) 4-5

Poisson's equation, 4-10

Polar motion, 3-24, 3-26-3-31, 9-7

Postflight processing, 2-17

Precession, 3-13, 3-17, 3-18

Predictor-corrector integration methods, 6-2-6-7
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Predictor-pseudocorrector methods, (6.1.2) 6-7

Preprocessing, (Appendix A) A-l, 7-1

Preprocessor/processor interfaces, A-l, A-3,
A-4, A-16, A-18

Prime Meridian, 3-3

Greenwich, 3-3
lunar, 3-3

Principal directions, 3-3

Probabilities

hyperellipse, (8.5.2) 8-53, 8-55 (Table 8-1)

hyperrectangle, (8.5.3) 8-55, 8-57 (Table 8-2)

Probability density function, 8-53

Propagation of covariance matrix, 8-15, 8-16

Proper time, C-6, C-8, C-11

FI

Radar altimeter model, (7.4) 7-51, (A.6) A-28

measurement equation, (7.4.2) 7-56

partial derivatives, (7.4.3) 7-58
surface model, (7.4.1) 7-51

Radar altimeter system, (A.6) A-28

Radar tracking systems (C-band), (A.2) A-8

Range (GRARR, ATSR, USB, and C-band),
7-12-7-15

instantaneous method, 7-14

iterative method, 7-13

partial derivatives, 7-15

Range ambiguity, A-2, A-3, A-5, A-9

Range and Angles method, early orbit,
(9.3) 9-44, 2-13, 9-1

Range difference, C-11, C-12

Range measurements
GRARR and ATSR, A-5, A-6

hybrid relay and Doppler, 7-19

modeling of, (7.3.2) 7-21
partial derivatives with respect to solve-for pa-

rameters, (7.3.3) 7-30

two-way and Doppler, 7-19

Range rate (GRARR, ATSR, USB), 7-15-7-18,
A-6-A-8

average range rate, 7-17, 7-18
instantaneous range difference method, 7-17
iterative range difference method, 7-16, 7-17

Range-rate formulas, (Appendix C) C-1

Realtime operation, near, 2-17

Reference ellipsoid, 7-51, 7-52, 7-55

Reference planes, 3-1, 3-2

Reference trajectory, 8-31, 8-32, 8-33

a priori, 8-21

Refraction. See atmospheric effects

Refraction difference vectors, C-4

Refraction effects (correction), C-2, C-7, C-9,
C-12, C-14, C-15

Regression equation, nonlinear, 8-1, 8-5, 8-25

Regularization, (6.4) 6-31, (5.3) 5-9, 5-4

Residual editing (estimation), (8.6.2) 8-61

Relativistic Doppler frequency shift, C-3-C-7,
C-12

Relativistic signal propagation, (Appendix C)
C-1

Residual error, predicted measurement, 8-31

Residual uncertainty, predicted measurement,
8-32, 8-34

Runge-Kutta integration method, (6.2) 6-22,
6-1, 6-19, 6-20, 9-3

fourth order with Gill coefficients (RKG),

(6.2.3) 6-26
Hull formulas, (6.2.2) 6-24
Shanks eighth-order formulas, (6.2.1) 6-23

S
Schur identity, 8-59

Sensor systems. See trajectory sensor systems

SGLS, (7.2) 7-4, 2-9, 7-2

Slow element vector, 5-41

Solar/Lunar/Planetary Ephemeris File, 3-22

Solar radiation pressure, (4.6) 4-64, 2-16

partial derivatives, (4.6.2) 4-67
perturbation model, (4.6.1) 4-64

Solve-for variables, 2-12, 2-13, 8-10, 8-24

a priori values, 8-3, 8-4, 8-6, 8-21
best estimate of, 8-6

Solve-for vector, 8-4, 8-10, 8-24, 8-31

SOR. See Statistical Output Report

Space-time matrix, C-l, C-2

Spacecraft dynamics, (2.3) 2-16

Special Perturbation Methods, 2-7, 5-1-5-4
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SRE USB and VHF sensor systems, (A.3)
A-J0, (7.2) 7-4, 2-9, 7-3

Stability
dynamic, 5-4, 5-10
numerical, 5-2, 5-3

Standard deviations, a priori, (Appendix D) D-1

Starting procedures, (6.1.6) 6-19

State correction vector, E-1

State noise, 8-30, 8-31, 8-40, 8-42, 8-46

State transition matrix, 2-12, 2-17, 4-1, 6-30,
8-11, 8-12, 8-15, 8-19, 8-30, 8-34

augmented, 8-45
elements, (4.9.2) 4-90

State vector

augmented, (8.5.1) 8-52, 8-38, 8-45
expanded, 8-13

Statistical adaptive filtering, (8.4.3) 8-42

Statistical Output Report (SOR), (8.7) 8-69,
2-13

Statistics, weighted least-squares and filter,
(8.6.4) 8-67

confidence interval for group mean, 8-68
group mean, 8-68

measurement residual groups, 8-69
root mean square error, 8-67
sample standard deviation, 8-68

sum of squares about the mean, 8-68

STDN laser tracking systems, (A.7) A-29, 2-9

Stepsize control, (6.1.7) 6-20, 2-7, 6-1, 6-2

Stepsize regularization, (6.4) 6-31, 2-8, 5-2,
5-5, 5-8-5-10, 6-1, 6-21

See also time regularization

St_/rmer-Cowell integration formulas, 5-6, 5-8,
5-9, 6-1, 6-7

System capabilities. See GTDS system capabili-
ties

T

Thrust effects, (4.8) 4-70, 2-17
acceleration model, (4.8.1) 4-71

high-thrust maneuver modeling, (4.8.4) 4-78
partial derivatives, (4.8.2) 4-73

tabular thrust force model, (4.8.3) 4-76

Time

coordinate, C-6, C-10, C-11, C-13

proper, C-6, C-8, C-10, C-11

Time correlation coefficients, 8-37

Time dependence of solve-for and consider vari-
ables, 8-10

Time element, 5-10, 5-11, 5-14

Time regularization, (6.4) 6-31, 2-8, 2-17, 6-1,
6-15, 6-18, 6-33

See also stepsize regularization

Time regularized Cowell method, (5.3) 5-8, 2-8,
5-3, 5-5, 6-20

Time systems, (3.4) 3-77
atomic time, A.1, (3.4.2) 3-78

coordinated universal time, UTC, (3.4.7) 3-81
ephemeris time, ET, (3.4.1) 3-77

station time, ST, (3.4.8) 3-81
transformations between, (3.5) 3-81

uncorrected universal time, UT0, (3.4.4) 3-80
universal time, UT, (3.4.3) 3-78
universal time, UT1, (3.4.5) 3-80
universal time, UT2, (3.4.6) 3-80

Time tag, 7-2, A-3, A-9, A-11, A-13, A-17,
A-21, A-29, A-35, A-36, A-37

Tracker models, ground-based, (7.2) 7-4

Tracking and Data Relay Satellite System
(TDRSS), 2-9, 7-2, 7-3

models, (7.3) 7-18

functional and processing description, (A.8)
A-30

Tracking modes, TDRSS, (7.3.1) 7-18
coherent mode, 7-46

Tracking process, (7.2.1) 7-4

Tracking (ground) stations (sites), (Appen-
dix A) A-l, 7-1

ATSR, A-3, A-6
BRTS, A-31, A-32, A-34
C-band, (7.2) 7-4, (A.2) A-8
GRARR, A-3, A-6, A-7

Minitrack, A-13, A-14, A-17
WSGT, A-31-A-33

See also trajectory sensor systems

Tracking system data types, 7-1-7-3

Trajectory sensor systems, (Appendix A) A-1
ATSR, (A.1) A-1
C-band radar, (A.2) A-8

GRARR, (A.1) A-1
Minitrack, (A.4) A-13
radar altimeter, (A.6) A-28
SRE (USB and VHF), (A.3) A-10
STDN laser, (A.7) A-29
TDRSS, (A.8) A-30

VLBI, (A.5)A-26

See also name of the specific sensor (track-
ing) system (listed alphabetically elsewhere
in the index)
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Transformations

See also coordinate transformations

equinoctial-Cartesian, (3.3.9) 3-65

from body-centered true of date to orbit
plane, (3.3.5) 3-46

from body-fixed to geographic, (3.3.6) 3-47

from Brouwer mean elements to osculating
Keplerian elements, (5.9.2) 5-49, (5.10.2)
5-55

from B1950.0 inertial to mean of date,
3-17-3-19

from C-band, GRARR, and USB data vectors

to local tangent coordinates, 9-45

from Cartesian position and velocity to DS
elements, (5.5.2) 5-20

from Cartesian position and velocity to KS pa-
rameters, (5.4.2) 5-13

from DS elements to Cartesian position and

velocity, (5.5.3) 5-25

from Earth-fixed to topocentric local tangent,
(3.3.7) 3-53

from geographic to spherical, (3.3.13) 3-73

from inertial to rotating libration, (3.3.14)
3-75

from J2000.0 inertial to mean of date,
3-14-3-17

from Keplerian to equinoctial and Herrick,
(3.3.11) 3-70

from KS parametric variables to Cartesian po-
sition and velocity, (5.4.3) 5-15

from mean of date to true of date, 3-19-3-23

from osculating orbital elements to averaged
elements, (5.8.5) 5-42

from osculating orbital elements to Brouwer
mean elements, (5.9.1) 5-47, (5.10.1)
5-55

from selenocentric true of date to
selenographic, (3.3.3) 3-31

from topocentric gimbal angles to inertial co-
ordinates, (9.2.1) 9-5

from true of date to body-fixed, (3.3.2) 3-23

from vehicle-fixed to body-centered true of
date, (3.3.12) 3-72

Herrick-Cartesian, (3.3.10) 3-68

Keplerian-Cartesian, (3.3.8) 3-54

spherical-Cartesian, (3.3.4) 3-40

Transformations between time systems,

(3.5) 3-81
by standard formula, (3.5.1) 3-82

by time polynomials, (3.5.2) 3-83

Transponder delay correction, (7.7.3) 7-96

for TDRSS, 7-23, 7-26-7-28

Troposphere model, (7.6.1) 7-61

U
Unified S-Band (USB) System (SRE), (A.3)

A-10, (7.2) 7-4, C-12

early orbit data (Range and Angles method),
(9.3) 9-44

functional description, A-10-A-12

preprocessing description, A-12, A-13

Uniformization, 5-2, 5-3, 5-5, 5-8, 5-10, 5-16

V
Variance, D-1

Variance estimation, 8-23-8-29

Variation of estimator with respect to consider

parameters, 8-23

Variation of parameters (VOP) formulations,
2-7, 4-1, 4-8, 5-2, 5-3, 5-39, 5-63, 6-1, 6-9

DS VOP formulation, (5.5) 5-16

VOP equations of motion, (5.5.1) 5-17
Gaussian VOP formulations, (5.7) 5-30, 5-39

equinoctial elements, (5.7.2) 5-33
Keplerian elements, (5.7.1) 5-31
Rectangular formulation, (5.7.3) 5-34

KS VOP formulation, (5.4) 5-9

VOP equations of motion, (5.4.1) 5-11

Variation of state with respect to consider dy-
namic parameters, 8-23

Variation of transformed state with respect to
consider variables, 8-23

Variational equations, (Chapter 4) 4-1, 4-69,
4-78, 4-91, 6-1, 6-2, 6-11, 6-12, 6-14,
6-15, 6-20, 6-22, 6-23, 6-25, 6-26, 6-27,
6-31, 6-33, 8-12, 8-19, 8-21

regularized, 6-33

Vehicle-fixed to body-centered true of date
transformations, (3.3.12) 3-72

Vernal equinox, 3-3, 3-4

Very High Frequency (VHF) system (SRE),
(A.3) A-10, (7.2) 7-4

Very Long Baseline Interferometer (VLBI) sys-
tem, (7.5) 7-59, 7-3

functional description and preprocessing,

(A.5) A-26

Vinti theory, (5.12) 5-64

VLBI. See Very Long Baseline Interferometer

Von Zeipel method, 5-1, 5-43, 5-54

VOP. See variation of parameters
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W
Weighting factors, dynamic, D-1

Weighting matrix, 8-1, 8-12, 8-63, 8-68

Weighting for a measurement, D-1
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